Author: Cristopher Moore,Stephan Mertens

Publisher: OUP Oxford

ISBN: 0191620807

Category: Science

Page: 1004

View: 6807

Author: Cristopher Moore,Stephan Mertens

Publisher: OUP Oxford

ISBN: 0191620807

Category: Science

Page: 1004

View: 6807

Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.

Author: Cristopher Moore,Stephan Mertens

Publisher: OUP Oxford

ISBN: 0191552763

Category: Science

Page: 1004

View: 3644

Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.

Author: Cristopher Moore,Stephan Mertens

Publisher: Oxford University Press

ISBN: 0199233217

Category: Computers

Page: 985

View: 5307

The boundary between physics and computer science has become a hotbed of interdisciplinary collaboration. In this book the authors introduce the reader to the fundamental concepts of computational complexity and give in-depth explorations of the major interfaces between computer science and physics.

*An Introduction to Computer Science*

Author: Ira Pohl,Alan C. Shaw

Publisher: Computer Science Press, Incorporated

ISBN: N.A

Category: Computers

Page: 397

View: 8717

Author: Marc Mézard,Andrea Montanari

Publisher: Oxford University Press

ISBN: 019857083X

Category: Computers

Page: 569

View: 5535

A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.

*Towards a Philosophy of Computer Science*

Author: Raymond Turner

Publisher: Springer

ISBN: 3662555654

Category: Computers

Page: 255

View: 6494

The philosophy of computer science is concerned with issues that arise from reflection upon the nature and practice of the discipline of computer science. This book presents an approach to the subject that is centered upon the notion of computational artefact. It provides an analysis of the things of computer science as technical artefacts. Seeing them in this way enables the application of the analytical tools and concepts from the philosophy of technology to the technical artefacts of computer science. With this conceptual framework the author examines some of the central philosophical concerns of computer science including the foundations of semantics, the logical role of specification, the nature of correctness, computational ontology and abstraction, formal methods, computational epistemology and explanation, the methodology of computer science, and the nature of computation. The book will be of value to philosophers and computer scientists.

*A Mechanistic Account*

Author: Gualtiero Piccinini

Publisher: Oxford University Press, USA

ISBN: 0199658854

Category: Computer science

Page: 313

View: 3240

Computation permeates our world, but a satisfactory philosophical theory of what it is has been lacking. Gualtiero Piccinini presents a mechanistic account of what makes a physical system a computing system. He argues that computation does not entail representation or information-processing, although information-processing entails computation.

Author: Ding-Zhu Du,Ker-I Ko

Publisher: John Wiley & Sons

ISBN: 1118594975

Category: Mathematics

Page: 512

View: 7807

Praise for the First Edition "...complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." -Zentralblatt MATH A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as: A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science Additional exercises at varying levels of difficulty to further test comprehension of the presented material End-of-chapter literature reviews that summarize each topic and offer additional sources for further study Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research. A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as: • A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science • Additional exercises at varying levels of difficulty to further test comprehension of the presented material • End-of-chapter literature reviews that summarize each topic and offer additional sources for further study Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.

Author: Dexter C. Kozen

Publisher: Springer Science & Business Media

ISBN: 1846284775

Category: Computers

Page: 418

View: 5151

This textbook is uniquely written with dual purpose. It cover cores material in the foundations of computing for graduate students in computer science and also provides an introduction to some more advanced topics for those intending further study in the area. This innovative text focuses primarily on computational complexity theory: the classification of computational problems in terms of their inherent complexity. The book contains an invaluable collection of lectures for first-year graduates on the theory of computation. Topics and features include more than 40 lectures for first year graduate students, and a dozen homework sets and exercises.

Author: George Tourlakis

Publisher: John Wiley & Sons

ISBN: 1118315359

Category: Mathematics

Page: 416

View: 5033

Learn the skills and acquire the intuition to assess the theoretical limitations of computer programming Offering an accessible approach to the topic, Theory of Computation focuses on the metatheory of computing and the theoretical boundaries between what various computational models can do and not do—from the most general model, the URM (Unbounded Register Machines), to the finite automaton. A wealth of programming-like examples and easy-to-follow explanations build the general theory gradually, which guides readers through the modeling and mathematical analysis of computational phenomena and provides insights on what makes things tick and also what restrains the ability of computational processes. Recognizing the importance of acquired practical experience, the book begins with the metatheory of general purpose computer programs, using URMs as a straightforward, technology-independent model of modern high-level programming languages while also exploring the restrictions of the URM language. Once readers gain an understanding of computability theory—including the primitive recursive functions—the author presents automata and languages, covering the regular and context-free languages as well as the machines that recognize these languages. Several advanced topics such as reducibilities, the recursion theorem, complexity theory, and Cook's theorem are also discussed. Features of the book include: A review of basic discrete mathematics, covering logic and induction while omitting specialized combinatorial topics A thorough development of the modeling and mathematical analysis of computational phenomena, providing a solid foundation of un-computability The connection between un-computability and un-provability: Gödel's first incompleteness theorem The book provides numerous examples of specific URMs as well as other programming languages including Loop Programs, FA (Deterministic Finite Automata), NFA (Nondeterministic Finite Automata), and PDA (Pushdown Automata). Exercises at the end of each chapter allow readers to test their comprehension of the presented material, and an extensive bibliography suggests resources for further study. Assuming only a basic understanding of general computer programming and discrete mathematics, Theory of Computation serves as a valuable book for courses on theory of computation at the upper-undergraduate level. The book also serves as an excellent resource for programmers and computing professionals wishing to understand the theoretical limitations of their craft.

Author: Michael Sipser

Publisher: Cengage Learning

ISBN: 1285401069

Category: Computers

Page: 504

View: 2204

Now you can clearly present even the most complex computational theory topics to your students with Sipser's distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser's well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition's refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject's rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E's comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Author: Neil A. Gershenfeld

Publisher: Cambridge University Press

ISBN: 9780521570954

Category: Mathematics

Page: 344

View: 3190

This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

*A Conceptual Perspective*

Author: Oded Goldreich

Publisher: Cambridge University Press

ISBN: 1139472747

Category: Computers

Page: N.A

View: 2156

Complexity theory is a central field of the theoretical foundations of computer science. It is concerned with the general study of the intrinsic complexity of computational tasks; that is, it addresses the question of what can be achieved within limited time (and/or with other limited natural computational resources). This book offers a conceptual perspective on complexity theory. It is intended to serve as an introduction for advanced undergraduate and graduate students, either as a textbook or for self-study. The book will also be useful to experts, since it provides expositions of the various sub-areas of complexity theory such as hardness amplification, pseudorandomness and probabilistic proof systems. In each case, the author starts by posing the intuitive questions that are addressed by the sub-area and then discusses the choices made in the actual formulation of these questions, the approaches that lead to the answers, and the ideas that are embedded in these answers.

Author: National Research Council,Division on Engineering and Physical Sciences,Computer Science and Telecommunications Board,Committee for the Workshops on Computational Thinking

Publisher: National Academies Press

ISBN: 9780309153720

Category: Education

Page: 114

View: 4422

Report of a Workshop on the Scope and Nature of Computational Thinking presents a number of perspectives on the definition and applicability of computational thinking. For example, one idea expressed during the workshop is that computational thinking is a fundamental analytical skill that everyone can use to help solve problems, design systems, and understand human behavior, making it useful in a number of fields. Supporters of this viewpoint believe that computational thinking is comparable to the linguistic, mathematical and logical reasoning taught to all children. Various efforts have been made to introduce K-12 students to the most basic and essential computational concepts and college curricula have tried to provide a basis for life-long learning of increasingly new and advanced computational concepts and technologies. At both ends of this spectrum, however, most efforts have not focused on fundamental concepts. The book discusses what some of those fundamental concepts might be. Report of a Workshop on the Scope and Nature of Computational Thinking explores the idea that as the use of computational devices is becoming increasingly widespread, computational thinking skills should be promulgated more broadly. The book is an excellent resource for professionals in a wide range of fields including educators and scientists.

*Information Processing in Single Neurons*

Author: Christof Koch

Publisher: Oxford University Press

ISBN: 0199760551

Category: Medical

Page: 588

View: 2926

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes. Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium- and potassium-currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation. Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Author: Scott Aaronson

Publisher: Cambridge University Press

ISBN: 0521199565

Category: Computers

Page: 370

View: 4639

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.

Author: Alexander George

Publisher: Oxford University Press on Demand

ISBN: 0195079299

Category: History

Page: 204

View: 3011

The essays in this volume investigate the conceptual foundations of mathematics illuminating the powers of the mind. Contributors include Alexander George, Michael Dummett, George Boolos, W.W. Tait, Wilfried Sieg, Daniel Isaacson, Charles Parsons, and Michael Hallett.

*NatureÕs Algorithms for Learning and Prospering in a Complex World*

Author: Leslie Valiant

Publisher: Basic Books

ISBN: 0465032710

Category: Science

Page: 208

View: 9809

Presenting a theory of the theoryless, a computer scientist provides a model of how effective behavior can be learned even in a world as complex as our own, shedding new light on human nature.

*Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation*

Author: Gary William Flake

Publisher: MIT Press

ISBN: 9780262561273

Category: Computers

Page: 493

View: 1295

Gary William Flake develops in depth the simple idea that recurrent rules can produce rich and complicated behaviors.

*Complexity Science and Computational Modeling*

Author: Allen Downey

Publisher: "O'Reilly Media, Inc."

ISBN: 1492040150

Category: Computers

Page: 200

View: 6368

Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you’ll use graphs, cellular automata, and agent-based models to study topics in physics, biology, and economics. Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of worked examples, exercises, case studies, and easy-to-understand explanations. In this updated second edition, you will: Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier Transform Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines Get Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automata Explore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalism Ideal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise.