Rigid Body Dynamics Algorithms

Author: Roy Featherstone

Publisher: Springer

ISBN: 1489975608

Category: Education

Page: 272

View: 9052

DOWNLOAD NOW »
Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.

Robot Dynamics Algorithms

Author: Roy Featherstone

Publisher: Springer

ISBN: 0387743154

Category: Technology & Engineering

Page: 211

View: 4418

DOWNLOAD NOW »
The purpose of this book is to present computationally efficient algorithms for calculating the dynamics of robot mechanisms represented as systems of rigid bodies. The efficiency is achieved by the use of recursive formulations of the equations of motion, i.e. formulations in which the equations of motion are expressed implicitly in terms of recurrence relations between the quantities describing the system. The use of recursive formulations in dynamics is fairly new, 50 the principles of their operation and reasons for their efficiency are explained. Three main algorithms are described: the recursIve Newton-Euler formulation for inverse dynamics (the calculation of the forces given the accelerations), and the composite-rigid-body and articulated-body methods for forward dynamics (the calculation of the accelerations given the forces). These algorithms are initially described in terms of an un-branched, open loop kinematic chain -- a typical serial robot mechanism. This is done to keep the descriptions of the algorithms simple, and is in line with descriptions appearing in the literature. Once the basic algorithms have been introduced, the restrictions on the mechanism are lifted and the algorithms are extended to cope with kinematic trees and loops, and general constraints at the joints. The problem of simulating the effect of contact between a robot and its environment is also considered. Some consideration is given to the details and practical problems of implementing these algori?hms on a computer.

Rigid Body Dynamics Algorithms

Author: Roy Featherstone

Publisher: Springer

ISBN: 9781489978684

Category: Computers

Page: 284

View: 6387

DOWNLOAD NOW »
Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency. Unique features include: A comprehensive collection of the best rigid-body dynamics algorithms Use of spatial (6D) vectors to greatly reduce the volume of algebra, to simplify the treatment of the subject, and to simplify the computer code that implements the algorithms Algorithms expressed both mathematically and in pseudocode for easy translation into computer programs Source code for many algorithms available on the internet Rigid Body Dynamics Algorithms is aimed at readers who already have some elementary knowledge of rigid-body dynamics, and are interested in calculating the dynamics of a rigid-body system. This book serves as an algorithms recipe book as well as a guide to the analysis and deeper understanding of rigid-body systems. "

Robot Dynamics Algorithms

Author: Roy Featherstone

Publisher: Springer

ISBN: 9781475764376

Category: Technology & Engineering

Page: 211

View: 1369

DOWNLOAD NOW »
The purpose of this book is to present computationally efficient algorithms for calculating the dynamics of robot mechanisms represented as systems of rigid bodies. The efficiency is achieved by the use of recursive formulations of the equations of motion, i.e. formulations in which the equations of motion are expressed implicitly in terms of recurrence relations between the quantities describing the system. The use of recursive formulations in dynamics is fairly new, 50 the principles of their operation and reasons for their efficiency are explained. Three main algorithms are described: the recursIve Newton-Euler formulation for inverse dynamics (the calculation of the forces given the accelerations), and the composite-rigid-body and articulated-body methods for forward dynamics (the calculation of the accelerations given the forces). These algorithms are initially described in terms of an un-branched, open loop kinematic chain -- a typical serial robot mechanism. This is done to keep the descriptions of the algorithms simple, and is in line with descriptions appearing in the literature. Once the basic algorithms have been introduced, the restrictions on the mechanism are lifted and the algorithms are extended to cope with kinematic trees and loops, and general constraints at the joints. The problem of simulating the effect of contact between a robot and its environment is also considered. Some consideration is given to the details and practical problems of implementing these algori?hms on a computer.

Guide to Dynamic Simulations of Rigid Bodies and Particle Systems

Author: Murilo G. Coutinho

Publisher: Springer Science & Business Media

ISBN: 1447144171

Category: Computers

Page: 402

View: 6093

DOWNLOAD NOW »
This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid-body systems. The text focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic-simulation engines. Each chapter examines numerous algorithms, describing their design and analysis in an accessible manner, without sacrificing depth of coverage or mathematical rigor. Features: examines the problem of computing an hierarchical representation of the geometric description of each simulated object, as well as the simulated world; discusses the use of discrete and continuous collision detection to handle thin or fast-moving objects; describes the computational techniques needed for determining all impulsive and contact forces between bodies with multiple simultaneous collisions and contacts; presents techniques that can be used to dynamically simulate articulated rigid bodies; concludes each chapter with exercises.

Rigid Body Dynamics for Beginners

Euler Angles & Quaternions

Author: Phil Kim

Publisher: CreateSpace

ISBN: 9781493598205

Category: Technology & Engineering

Page: 174

View: 3235

DOWNLOAD NOW »
Has anyone experienced difficulty and confusion in understanding what the Euler angles, quaternions, and direction cosine matrices are, and furthermore, about the relationships among them? This book is for those who had struggled to figure out what all the aforementioned concepts are, and also provides a practical example that could be easily followed with MATLAB. In addition, some surface of linear motions will also be touched so that in the end, a set of equations of motion that describe the motion of a rigid body in three-dimensional space could be constructed. Following step by step, the reader will be gradually immersed into the joy of learning and applying basic attitude dynamics. The book will be good for those who are already familiar in the field by helping them reorganize the concepts and knowledge they have learned before.

Advanced Dynamics

Rigid Body, Multibody, and Aerospace Applications

Author: Reza N. Jazar

Publisher: John Wiley & Sons

ISBN: 9780470892138

Category: Technology & Engineering

Page: 1312

View: 7324

DOWNLOAD NOW »
A thorough understanding of rigid body dynamics as it relates to modern mechanical and aerospace systems requires engineers to be well versed in a variety of disciplines. This book offers an all-encompassing view by interconnecting a multitude of key areas in the study of rigid body dynamics, including classical mechanics, spacecraft dynamics, and multibody dynamics. In a clear, straightforward style ideal for learners at any level, Advanced Dynamics builds a solid fundamental base by first providing an in-depth review of kinematics and basic dynamics before ultimately moving forward to tackle advanced subject areas such as rigid body and Lagrangian dynamics. In addition, Advanced Dynamics: Is the only book that bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering Contains coverage of special applications that highlight the different aspects of dynamics and enhances understanding of advanced systems across all related disciplines Presents material using the author's own theory of differentiation in different coordinate frames, which allows for better understanding and application by students and professionals Both a refresher and a professional resource, Advanced Dynamics leads readers on a rewarding educational journey that will allow them to expand the scope of their engineering acumen as they apply a wide range of applications across many different engineering disciplines.

Dynamics of Multibody Systems

Author: Ahmed A. Shabana

Publisher: Cambridge University Press

ISBN: 1107435889

Category: Science

Page: 408

View: 1024

DOWNLOAD NOW »
This enhanced fourth edition of Dynamics of Multibody Systems includes an additional chapter that provides explanations of some of the fundamental issues addressed in the book, as well as new detailed derivations of some important problems. Many common mechanisms such as automobiles, space structures, robots and micromachines have mechanical and structural systems that consist of interconnected rigid and deformable components. The dynamics of these large-scale multibody systems are highly nonlinear, presenting complex problems that in most cases can only be solved with computer-based techniques. The book begins with a review of the basic ideas of kinematics and the dynamics of rigid and deformable bodies before moving on to more advanced topics and computer implementation. The book's wealth of examples and practical applications will be useful to graduate students, researchers and practising engineers working on a wide variety of flexible multibody systems.

Rigid Body Dynamics for Space Applications

Author: Vladimir S Aslanov

Publisher: Butterworth-Heinemann

ISBN: 0081018746

Category: Technology & Engineering

Page: 420

View: 8826

DOWNLOAD NOW »
Rigid Body Dynamics for Space Applications explores the modern problems of spaceflight mechanics, such as attitude dynamics of re-entry and space debris in Earth's atmosphere; dynamics and control of coaxial satellite gyrostats; deployment, dynamics, and control of a tether-assisted return mission of a re-entry capsule; and removal of large space debris by a tether tow. Most space systems can be considered as a system of rigid bodies, with additional elastic and viscoelastic elements and fuel residuals in some cases. This guide shows the nature of the phenomena and explains the behavior of space objects. Researchers working on spacecraft attitude dynamics or space debris removal as well as those in the fields of mechanics, aerospace engineering, and aerospace science will benefit from this book. Provides a complete treatise of modeling attitude for a range of novel and modern attitude control problems of spaceflight mechanics Features chapters on the application of rigid body dynamics to atmospheric re-entries, tethered assisted re-entry, and tethered space debris removal Shows relatively simple ways of constructing mathematical models and analytical solutions describing the behavior of very complex material systems Uses modern methods of regular and chaotic dynamics to obtain results

Robot and Multibody Dynamics

Analysis and Algorithms

Author: Abhinandan Jain

Publisher: Springer Science & Business Media

ISBN: 9781441972675

Category: Technology & Engineering

Page: 510

View: 9102

DOWNLOAD NOW »
Robot and Multibody Dynamics: Analysis and Algorithms provides a comprehensive and detailed exposition of a new mathematical approach, referred to as the Spatial Operator Algebra (SOA), for studying the dynamics of articulated multibody systems. The approach is useful in a wide range of applications including robotics, aerospace systems, articulated mechanisms, bio-mechanics and molecular dynamics simulation. The book also: treats algorithms for simulation, including an analysis of complexity of the algorithms, describes one universal, robust, and analytically sound approach to formulating the equations that govern the motion of complex multi-body systems, covers a range of more advanced topics including under-actuated systems, flexible systems, linearization, diagonalized dynamics and space manipulators. Robot and Multibody Dynamics: Analysis and Algorithms will be a valuable resource for researchers and engineers looking for new mathematical approaches to finding engineering solutions in robotics and dynamics.

Modern Robotics

Author: Kevin M. Lynch,Frank C. Park

Publisher: Cambridge University Press

ISBN: 1107156300

Category: Computers

Page: 544

View: 1392

DOWNLOAD NOW »
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Dynamics of Particles and Rigid Bodies

A Systematic Approach

Author: Anil Rao

Publisher: Cambridge University Press

ISBN: 9780521858113

Category: Science

Page: 509

View: 4069

DOWNLOAD NOW »
This 2006 work is intended for students who want a rigorous, systematic, introduction to engineering dynamics.

Fundamentals of Robotic Mechanical Systems

Theory, Methods, and Algorithms

Author: Jorge Angeles

Publisher: Springer Science & Business Media

ISBN: 3319018515

Category: Technology & Engineering

Page: 589

View: 9223

DOWNLOAD NOW »
The 4th edition includes updated and additional examples and exercises on the core fundamental concepts of mechanics, robots, and kinematics of serial robots. New images of CAD models and physical robots help to motivate concepts being introduced. Each chapter of the book can be read independently of others as it addresses a seperate issue in robotics.

Dynamic Simulations of Multibody Systems

Author: Murilo G. Coutinho

Publisher: Springer Science & Business Media

ISBN: 147573476X

Category: Computers

Page: 379

View: 1452

DOWNLOAD NOW »
This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid body systems. It focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic simulation engines that can be used to generate convincing animations of physical events involving particles and rigid bodies. It can also be used to produce accurate simulations of mechanical systems, such as a robotic parts feeder. The book is intended for researchers in computer graphics, computer animation, computer-aided mechanical design and modeling software developers.

Game Physics Engine Development

How to Build a Robust Commercial-Grade Physics Engine for your Game

Author: Ian Millington

Publisher: CRC Press

ISBN: 0123819776

Category: Art

Page: 524

View: 2916

DOWNLOAD NOW »
Physics is really important to game programmers who need to know how to add physical realism to their games. They need to take into account the laws of physics when creating a simulation or game engine, particularly in 3D computer graphics, for the purpose of making the effects appear more real to the observer or player.The game engine needs to recognize the physical properties of objects that artists create, and combine them with realistic motion. The physics ENGINE is a computer program that you work into your game that simulates Newtonian physics and predict effects under different conditions. In video games, the physics engine uses real-time physics to improve realism. This is the only book in its category to take readers through the process of building a complete game-ready physics engine from scratch. The Cyclone game engine featured in the book was written specifically for this book and has been utilized in iPhone application development and Adobe Flash projects. There is a good deal of master-class level information available, but almost nothing in any format that teaches the basics in a practical way. The second edition includes NEW and/or revised material on collision detection, 2D physics, casual game physics for Flash games, more references, a glossary, and end-of-chapter exercises. The companion website will include the full source code of the Cyclone physics engine, along with example applications that show the physics system in operation.

Vehicle-Manipulator Systems

Modeling for Simulation, Analysis, and Control

Author: Pål Johan From,Jan Tommy Gravdahl,Kristin Ytterstad Pettersen

Publisher: Springer Science & Business Media

ISBN: 1447154630

Category: Technology & Engineering

Page: 388

View: 4143

DOWNLOAD NOW »
Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas. The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain globally valid representations of the dynamic equations of vehicle-manipulator systems. The specific characteristics of several different types of vehicle-manipulator systems are included and the various application areas of these systems are discussed in detail. For underwater robots buoyancy and gravity, drag forces, added mass properties, and ocean currents are considered. For space robotics the effects of free fall environments and the strong dynamic coupling between the spacecraft and the manipulator are discussed. For wheeled robots wheel kinematics and non-holonomic motion is treated, and finally the inertial forces are included for robots mounted on a forced moving base. Modeling and Control of Vehicle-manipulator Systems will be of interest to researchers and engineers studying and working on many applications of robotics: underwater, space, personal assistance, and mobile manipulation in general, all of which have similarities in the equations required for modeling and control.

Dynamics of Multibody Systems

Author: Jens Wittenburg

Publisher: Springer Science & Business Media

ISBN: 3540739149

Category: Technology & Engineering

Page: 223

View: 9727

DOWNLOAD NOW »
Thank heavens for Jens Wittenburg, of the University of Karlsruhe in Germany. Anyone who’s been laboring for years over equation after equation will want to give him a great big hug. It is common practice to develop equations for each system separately and to consider the labor necessary for deriving all of these as inevitable. Not so, says the author. Here, he takes it upon himself to describe in detail a formalism which substantially simplifies these tasks.

Nonlinear Dynamics

Mathematical Models for Rigid Bodies with a Liquid

Author: Ivan A. Lukovsky

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110316579

Category: Mathematics

Page: 410

View: 4315

DOWNLOAD NOW »
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.

Theory of Applied Robotics

Kinematics, Dynamics, and Control (2nd Edition)

Author: Reza N. Jazar

Publisher: Springer Science & Business Media

ISBN: 1441917500

Category: Technology & Engineering

Page: 883

View: 6067

DOWNLOAD NOW »
The second edition of this book would not have been possible without the comments and suggestions from students, especially those at Columbia University. Many of the new topics introduced here are a direct result of student feedback that helped refine and clarify the material. The intention of this book was to develop material that the author would have liked to have had available as a student. Theory of Applied Robotics: Kinematics, Dynamics, and Control (2nd Edition) explains robotics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. The second edition includes updated and expanded exercise sets and problems. New coverage includes: components and mechanisms of a robotic system with actuators, sensors and controllers, along with updated and expanded material on kinematics. New coverage is also provided in sensing and control including position sensors, speed sensors and acceleration sensors. Students, researchers, and practicing engineers alike will appreciate this user-friendly presentation of a wealth of robotics topics, most notably orientation, velocity, and forward kinematics.

Planning Algorithms

Author: Steven M. LaValle

Publisher: Cambridge University Press

ISBN: 1139455176

Category: Computers

Page: N.A

View: 3406

DOWNLOAD NOW »
Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning, but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the 'configuration spaces' of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. This text and reference is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.