Author: Charles Chapman Pugh

Publisher: Springer

ISBN: 3319177710

Category: Mathematics

Page: 478

View: 9224

Author: Charles Chapman Pugh

Publisher: Springer

ISBN: 3319177710

Category: Mathematics

Page: 478

View: 9224

Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonné, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri’s Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali’s Covering Lemma, density points — which are rarely treated in books at this level — and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.

*An Introduction*

Author: Andrew Browder

Publisher: Springer Science & Business Media

ISBN: 1461207150

Category: Mathematics

Page: 335

View: 5244

Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Author: Stephen Abbott

Publisher: Springer

ISBN: 1493927124

Category: Mathematics

Page: 312

View: 1432

This lively introductory text exposes the student to the rewards of a rigorous study of functions of a real variable. In each chapter, informal discussions of questions that give analysis its inherent fascination are followed by precise, but not overly formal, developments of the techniques needed to make sense of them. By focusing on the unifying themes of approximation and the resolution of paradoxes that arise in the transition from the finite to the infinite, the text turns what could be a daunting cascade of definitions and theorems into a coherent and engaging progression of ideas. Acutely aware of the need for rigor, the student is much better prepared to understand what constitutes a proper mathematical proof and how to write one. Fifteen years of classroom experience with the first edition of Understanding Analysis have solidified and refined the central narrative of the second edition. Roughly 150 new exercises join a selection of the best exercises from the first edition, and three more project-style sections have been added. Investigations of Euler’s computation of ζ(2), the Weierstrass Approximation Theorem, and the gamma function are now among the book’s cohort of seminal results serving as motivation and payoff for the beginning student to master the methods of analysis.

Author: Murray H. Protter

Publisher: Springer Science & Business Media

ISBN: 0387227490

Category: Mathematics

Page: 276

View: 2574

From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.

Author: Sudhir R. Ghorpade,Balmohan V. Limaye

Publisher: Springer Science & Business Media

ISBN: 1441916210

Category: Mathematics

Page: 475

View: 4616

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

Author: E. Fischer

Publisher: Springer Science & Business Media

ISBN: 1461394813

Category: Mathematics

Page: 770

View: 3655

There are a great deal of books on introductory analysis in print today, many written by mathematicians of the first rank. The publication of another such book therefore warrants a defense. I have taught analysis for many years and have used a variety of texts during this time. These books were of excellent quality mathematically but did not satisfy the needs of the students I was teaching. They were written for mathematicians but not for those who were first aspiring to attain that status. The desire to fill this gap gave rise to the writing of this book. This book is intended to serve as a text for an introductory course in analysis. Its readers will most likely be mathematics, science, or engineering majors undertaking the last quarter of their undergraduate education. The aim of a first course in analysis is to provide the student with a sound foundation for analysis, to familiarize him with the kind of careful thinking used in advanced mathematics, and to provide him with tools for further work in it. The typical student we are dealing with has completed a three-semester calculus course and possibly an introductory course in differential equations. He may even have been exposed to a semester or two of modern algebra. All this time his training has most likely been intuitive with heuristics taking the place of proof. This may have been appropriate for that stage of his development.

*The Theory of Calculus*

Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN: 1461462711

Category: Mathematics

Page: 412

View: 1576

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

*A New Approach to Real Analysis*

Author: Alan F. Beardon

Publisher: Springer Science & Business Media

ISBN: 1461206979

Category: Mathematics

Page: 190

View: 9206

Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.

Author: Sterling K. Berberian

Publisher: Springer Science & Business Media

ISBN: 1441985484

Category: Mathematics

Page: 240

View: 1231

Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.

Author: Paul J. Sally, Jr.

Publisher: American Mathematical Soc.

ISBN: 0821891413

Category: Mathematics

Page: 362

View: 6222

This is a textbook for a course in Honors Analysis (for freshman/sophomore undergraduates) or Real Analysis (for junior/senior undergraduates) or Analysis-I (beginning graduates). It is intended for students who completed a course in ``AP Calculus'', possibly followed by a routine course in multivariable calculus and a computational course in linear algebra. There are three features that distinguish this book from many other books of a similar nature and which are important for the use of this book as a text. The first, and most important, feature is the collection of exercises. These are spread throughout the chapters and should be regarded as an essential component of the student's learning. Some of these exercises comprise a routine follow-up to the material, while others challenge the student's understanding more deeply. The second feature is the set of independent projects presented at the end of each chapter. These projects supplement the content studied in their respective chapters. They can be used to expand the student's knowledge and understanding or as an opportunity to conduct a seminar in Inquiry Based Learning in which the students present the material to their class. The third really important feature is a series of challenge problems that increase in impossibility as the chapters progress.

*Foundations and Functions of One Variable*

Author: Miklós Laczkovich,Vera T. Sós

Publisher: Springer

ISBN: 1493927663

Category: Mathematics

Page: 483

View: 2430

Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.

Author: Ernst Hairer,Gerhard Wanner

Publisher: Springer Science & Business Media

ISBN: 0387770364

Category: Mathematics

Page: 379

View: 4713

This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.

Author: Sudhir R. Ghorpade,Balmohan V. Limaye

Publisher: Springer Science & Business Media

ISBN: 0387305300

Category: Mathematics

Page: 432

View: 976

This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.

Author: Erhan Çınlar,Robert J Vanderbei

Publisher: Springer Science & Business Media

ISBN: 1461452570

Category: Mathematics

Page: 161

View: 355

This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important “four-C’s”: convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.

Author: Daniel Rosenthal,David Rosenthal,Peter Rosenthal

Publisher: Springer

ISBN: 3319056549

Category: Mathematics

Page: 161

View: 5708

Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.

*With an Invitation to Functional Analysis*

Author: Matthew A. Pons

Publisher: Springer Science & Business Media

ISBN: 1461496381

Category: Mathematics

Page: 409

View: 4365

This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.

*An Introduction to Set Theory and Analysis*

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 331901577X

Category: Mathematics

Page: 244

View: 5917

While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.

Author: Jerry Shurman

Publisher: Springer

ISBN: 3319493140

Category: Mathematics

Page: 507

View: 5102

The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of geometric intuition (the visual cortex being quickly instinctive) algebraic manipulation (symbol-patterns being precise and robust) incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject). Thinking in these ways renders mathematics coherent, inevitable, and fluid. The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs.

Author: Tom L. Lindstrøm

Publisher: American Mathematical Soc.

ISBN: 1470440628

Category: Functional analysis

Page: 369

View: 8074

Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.

Author: Paul Loya

Publisher: Springer

ISBN: 1493967959

Category: Mathematics

Page: 722

View: 6582

Lively prose and imaginative exercises draw the reader into this unique introductory real analysis textbook. Motivating the fundamental ideas and theorems that underpin real analysis with historical remarks and well-chosen quotes, the author shares his enthusiasm for the subject throughout. A student reading this book is invited not only to acquire proficiency in the fundamentals of analysis, but to develop an appreciation for abstraction and the language of its expression. In studying this book, students will encounter: the interconnections between set theory and mathematical statements and proofs; the fundamental axioms of the natural, integer, and real numbers; rigorous ε-N and ε-δ definitions; convergence and properties of an infinite series, product, or continued fraction; series, product, and continued fraction formulæ for the various elementary functions and constants. Instructors will appreciate this engaging perspective, showcasing the beauty of these fundamental results.