Programming Hive

Data Warehouse and Query Language for Hadoop

Author: Edward Capriolo,Dean Wampler,Jason Rutherglen

Publisher: "O'Reilly Media, Inc."

ISBN: 1449326978

Category: Computers

Page: 350

View: 9475

DOWNLOAD NOW »
Need to move a relational database application to Hadoop? This comprehensive guide introduces you to Apache Hive, Hadoop’s data warehouse infrastructure. You’ll quickly learn how to use Hive’s SQL dialect—HiveQL—to summarize, query, and analyze large datasets stored in Hadoop’s distributed filesystem. This example-driven guide shows you how to set up and configure Hive in your environment, provides a detailed overview of Hadoop and MapReduce, and demonstrates how Hive works within the Hadoop ecosystem. You’ll also find real-world case studies that describe how companies have used Hive to solve unique problems involving petabytes of data. Use Hive to create, alter, and drop databases, tables, views, functions, and indexes Customize data formats and storage options, from files to external databases Load and extract data from tables—and use queries, grouping, filtering, joining, and other conventional query methods Gain best practices for creating user defined functions (UDFs) Learn Hive patterns you should use and anti-patterns you should avoid Integrate Hive with other data processing programs Use storage handlers for NoSQL databases and other datastores Learn the pros and cons of running Hive on Amazon’s Elastic MapReduce

Programming Hive

Author: Edward Capriolo,Dean Wampler,Jason Rutherglen

Publisher: "O'Reilly Media, Inc."

ISBN: 1449319335

Category: Computers

Page: 328

View: 8585

DOWNLOAD NOW »
Describes the features and functions of Apache Hive, the data infrastructure for Hadoop.

Programming Hive

Author: Edward Capriolo,Dean Wampler,Jason Rutherglen

Publisher: "O'Reilly Media, Inc."

ISBN: 1449326986

Category: Computers

Page: 350

View: 5788

DOWNLOAD NOW »
Need to move a relational database application to Hadoop? This comprehensive guide introduces you to Apache Hive, Hadoop’s data warehouse infrastructure. You’ll quickly learn how to use Hive’s SQL dialect—HiveQL—to summarize, query, and analyze large datasets stored in Hadoop’s distributed filesystem. This example-driven guide shows you how to set up and configure Hive in your environment, provides a detailed overview of Hadoop and MapReduce, and demonstrates how Hive works within the Hadoop ecosystem. You’ll also find real-world case studies that describe how companies have used Hive to solve unique problems involving petabytes of data. Use Hive to create, alter, and drop databases, tables, views, functions, and indexes Customize data formats and storage options, from files to external databases Load and extract data from tables—and use queries, grouping, filtering, joining, and other conventional query methods Gain best practices for creating user defined functions (UDFs) Learn Hive patterns you should use and anti-patterns you should avoid Integrate Hive with other data processing programs Use storage handlers for NoSQL databases and other datastores Learn the pros and cons of running Hive on Amazon’s Elastic MapReduce

Apache Sqoop Cookbook

Author: Kathleen Ting,Jarek Jarcec Cecho

Publisher: "O'Reilly Media, Inc."

ISBN: 1449364608

Category: Computers

Page: 94

View: 3361

DOWNLOAD NOW »
Integrating data from multiple sources is essential in the age of big data, but it can be a challenging and time-consuming task. This handy cookbook provides dozens of ready-to-use recipes for using Apache Sqoop, the command-line interface application that optimizes data transfers between relational databases and Hadoop. Sqoop is both powerful and bewildering, but with this cookbook’s problem-solution-discussion format, you’ll quickly learn how to deploy and then apply Sqoop in your environment. The authors provide MySQL, Oracle, and PostgreSQL database examples on GitHub that you can easily adapt for SQL Server, Netezza, Teradata, or other relational systems. Transfer data from a single database table into your Hadoop ecosystem Keep table data and Hadoop in sync by importing data incrementally Import data from more than one database table Customize transferred data by calling various database functions Export generated, processed, or backed-up data from Hadoop to your database Run Sqoop within Oozie, Hadoop’s specialized workflow scheduler Load data into Hadoop’s data warehouse (Hive) or database (HBase) Handle installation, connection, and syntax issues common to specific database vendors

Data Analytics with Hadoop

An Introduction for Data Scientists

Author: Benjamin Bengfort,Jenny Kim

Publisher: "O'Reilly Media, Inc."

ISBN: 1491913762

Category: Computers

Page: 288

View: 4054

DOWNLOAD NOW »
Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you’ll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You’ll also learn about the analytical processes and data systems available to build and empower data products that can handle—and actually require—huge amounts of data. Understand core concepts behind Hadoop and cluster computing Use design patterns and parallel analytical algorithms to create distributed data analysis jobs Learn about data management, mining, and warehousing in a distributed context using Apache Hive and HBase Use Sqoop and Apache Flume to ingest data from relational databases Program complex Hadoop and Spark applications with Apache Pig and Spark DataFrames Perform machine learning techniques such as classification, clustering, and collaborative filtering with Spark’s MLlib

Programming Pig

Dataflow Scripting with Hadoop

Author: Alan Gates,Daniel Dai

Publisher: "O'Reilly Media, Inc."

ISBN: 1491937041

Category: Computers

Page: 368

View: 2768

DOWNLOAD NOW »
For many organizations, Hadoop is the first step for dealing with massive amounts of data. The next step? Processing and analyzing datasets with the Apache Pig scripting platform. With Pig, you can batch-process data without having to create a full-fledged application, making it easy to experiment with new datasets. Updated with use cases and programming examples, this second edition is the ideal learning tool for new and experienced users alike. You’ll find comprehensive coverage on key features such as the Pig Latin scripting language and the Grunt shell. When you need to analyze terabytes of data, this book shows you how to do it efficiently with Pig. Delve into Pig’s data model, including scalar and complex data types Write Pig Latin scripts to sort, group, join, project, and filter your data Use Grunt to work with the Hadoop Distributed File System (HDFS) Build complex data processing pipelines with Pig’s macros and modularity features Embed Pig Latin in Python for iterative processing and other advanced tasks Use Pig with Apache Tez to build high-performance batch and interactive data processing applications Create your own load and store functions to handle data formats and storage mechanisms

Apache Hive Cookbook

Author: Hanish Bansal,Saurabh Chauhan,Shrey Mehrotra

Publisher: Packt Publishing Ltd

ISBN: 1782161090

Category: Computers

Page: 268

View: 7485

DOWNLOAD NOW »
Easy, hands-on recipes to help you understand Hive and its integration with frameworks that are used widely in today's big data world About This Book Grasp a complete reference of different Hive topics. Get to know the latest recipes in development in Hive including CRUD operations Understand Hive internals and integration of Hive with different frameworks used in today's world. Who This Book Is For The book is intended for those who want to start in Hive or who have basic understanding of Hive framework. Prior knowledge of basic SQL command is also required What You Will Learn Learn different features and offering on the latest Hive Understand the working and structure of the Hive internals Get an insight on the latest development in Hive framework Grasp the concepts of Hive Data Model Master the key concepts like Partition, Buckets and Statistics Know how to integrate Hive with other frameworks such as Spark, Accumulo, etc In Detail Hive was developed by Facebook and later open sourced in Apache community. Hive provides SQL like interface to run queries on Big Data frameworks. Hive provides SQL like syntax also called as HiveQL that includes all SQL capabilities like analytical functions which are the need of the hour in today's Big Data world. This book provides you easy installation steps with different types of metastores supported by Hive. This book has simple and easy to learn recipes for configuring Hive clients and services. You would also learn different Hive optimizations including Partitions and Bucketing. The book also covers the source code explanation of latest Hive version. Hive Query Language is being used by other frameworks including spark. Towards the end you will cover integration of Hive with these frameworks. Style and approach Starting with the basics and covering the core concepts with the practical usage, this book is a complete guide to learn and explore Hive offerings.

Practical Hive

A Guide to Hadoop's Data Warehouse System

Author: Scott Shaw,Andreas François Vermeulen,Ankur Gupta,David Kjerrumgaard

Publisher: Apress

ISBN: 1484202716

Category: Computers

Page: 265

View: 9549

DOWNLOAD NOW »
Dive into the world of SQL on Hadoop and get the most out of your Hive data warehouses. This book is your go-to resource for using Hive: authors Scott Shaw, Ankur Gupta, David Kjerrumgaard, and Andreas Francois Vermeulen take you through learning HiveQL, the SQL-like language specific to Hive, to analyze, export, and massage the data stored across your Hadoop environment. From deploying Hive on your hardware or virtual machine and setting up its initial configuration to learning how Hive interacts with Hadoop, MapReduce, Tez and other big data technologies, Practical Hive gives you a detailed treatment of the software. In addition, this book discusses the value of open source software, Hive performance tuning, and how to leverage semi-structured and unstructured data. What You Will Learn Install and configure Hive for new and existing datasets Perform DDL operations Execute efficient DML operations Use tables, partitions, buckets, and user-defined functions Discover performance tuning tips and Hive best practices Who This Book Is For Developers, companies, and professionals who deal with large amounts of data and could use software that can efficiently manage large volumes of input. It is assumed that readers have the ability to work with SQL.

Apache Hive Essentials

Author: Dayong Du

Publisher: Packt Publishing Ltd

ISBN: 1782175059

Category: Computers

Page: 208

View: 8650

DOWNLOAD NOW »
If you are a data analyst, developer, or simply someone who wants to use Hive to explore and analyze data in Hadoop, this is the book for you. Whether you are new to big data or an expert, with this book, you will be able to master both the basic and the advanced features of Hive. Since Hive is an SQL-like language, some previous experience with the SQL language and databases is useful to have a better understanding of this book.

Hadoop: The Definitive Guide

Author: Tom White

Publisher: "O'Reilly Media, Inc."

ISBN: 1449338771

Category: Computers

Page: 688

View: 3954

DOWNLOAD NOW »
Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

BIG DATA AND HADOOP

Author: Mayank Bhusan

Publisher: BPB Publications

ISBN: 9386551993

Category: Computers

Page: 333

View: 816

DOWNLOAD NOW »
The book contains the latest trend in IT industry 'BigData and Hadoop'. It explains how big is 'Big Data' and why everybody is trying to implement this into their IT project.It includes research work on various topics, theoretical and practical approach, each component of the architecture is described along with current industry trends.Big Data and Hadoop have taken together are a new skill as per the industry standards. Readers will get a compact book along with the industry experience and would be a reference to help readers.KEY FEATURES Overview Of Big Data, Basics of Hadoop, Hadoop Distributed File System, HBase, MapReduce, HIVE: The Dataware House Of Hadoop, PIG: The Higher Level Programming Environment, SQOOP: Importing Data From Heterogeneous Sources, Flume, Ozzie, Zookeeper & Big Data Stream Mining, Chapter-wise Questions & Previous Years Questions

HBase

The Definitive Guide

Author: Lars George

Publisher: "O'Reilly Media, Inc."

ISBN: 1449396100

Category: Computers

Page: 522

View: 3668

DOWNLOAD NOW »
If your organization is looking for a storage solution to accommodate a virtually endless amount of data, this book will show you how Apache HBase can fulfill your needs. As the open source implementation of Google's BigTable architecture, HBase scales to billions of rows and millions of columns, while ensuring that write and read performance remain constant.HBase: The Definitive Guideprovides the details you require, whether you simply want to evaluate this high-performance, non-relational database, or put it into practice right away. HBase's adoption rate is beginning to climb, and several IT executives are asking pointed questions about this high-capacity database. This is the only book available to give you meaningful answers. Learn how to distribute large datasets across an inexpensive cluster of commodity servers Develop HBase clients in many programming languages, including Java, Python, and Ruby Get details on HBase's primary storage system, HDFS—Hadoop’s distributed and replicated filesystem Learn how HBase's native interface to Hadoop’s MapReduce framework enables easy development and execution of batch jobs that can scan entire tables Discover the integration between HBase and other facets of the Apache Hadoop project

Pro Apache Phoenix

An SQL Driver for HBase

Author: Shakil Akhtar,Ravi Magham

Publisher: Apress

ISBN: 1484223705

Category: Computers

Page: 140

View: 9491

DOWNLOAD NOW »
Leverage Phoenix as an ANSI SQL engine built on top of the highly distributed and scalable NoSQL framework HBase. Learn the basics and best practices that are being adopted in Phoenix to enable a high write and read throughput in a big data space. This book includes real-world cases such as Internet of Things devices that send continuous streams to Phoenix, and the book explains how key features such as joins, indexes, transactions, and functions help you understand the simple, flexible, and powerful API that Phoenix provides. Examples are provided using real-time data and data-driven businesses that show you how to collect, analyze, and act in seconds. Pro Apache Phoenix covers the nuances of setting up a distributed HBase cluster with Phoenix libraries, running performance benchmarks, configuring parameters for production scenarios, and viewing the results. The book also shows how Phoenix plays well with other key frameworks in the Hadoop ecosystem such as Apache Spark, Pig, Flume, and Sqoop. You will learn how to: Handle a petabyte data store by applying familiar SQL techniques Store, analyze, and manipulate data in a NoSQL Hadoop echo system with HBase Apply best practices while working with a scalable data store on Hadoop and HBase Integrate popular frameworks (Apache Spark, Pig, Flume) to simplify big data analysis Demonstrate real-time use cases and big data modeling techniques Who This Book Is For Data engineers, Big Data administrators, and architects.

Programming Firefox

Building Rich Internet Applications with XUL

Author: Kenneth C. Feldt

Publisher: "O'Reilly Media, Inc."

ISBN: 9780596553685

Category: Computers

Page: 512

View: 2593

DOWNLOAD NOW »
This is your guide to building Internet applications and user interfaces with the Mozilla component framework, which is best known for the Firefox web browser and Thunderbird email client. Programming Firefox demonstrates how to use the XML User Interface Language (XUL) with open source tools in the framework's Cross-Platform Component (XPCOM) library to develop a variety of projects, such as commercial web applications and Firefox extensions. This book serves as both a programmer's reference and an in-depth tutorial, so not only do you get a comprehensive look at XUL's capabilities--from simple interface design to complex, multitier applications with real-time operations--but you also learn how to build a complete working application with XUL. If you're coming from a Java or .NET environment, you'll be amazed at how quickly large-scale applications can be constructed with XPCOM and XUL. Topics in Programming Firefox include: An overview of Firefox technology An introduction to the graphical elements that compose a XUL application Firefox development tools and the process used to design and build applications Managing an application with multiple content areas Introduction to Resource Description Files, and how the Firefox interface renders RDF Manipulating XHTML with JavaScript Displaying documents using the Scalable Vector Graphics standard and HTML Canvas The XML Binding Language and interface overlays to extend Firefox Implementing the next-generation forms interface through XForms Programming Firefox is ideal for the designer or developer charged with delivering innovative standards-based Internet applications, whether they're web server applications or Internet-enabled desktop applications. It's not just a how-to book, but a what-if exploration that encourages you to push the envelope of the Internet experience.

Mastering Hadoop

Author: Sandeep Karanth

Publisher: Packt Publishing Ltd

ISBN: 1783983655

Category: Computers

Page: 374

View: 8105

DOWNLOAD NOW »
Do you want to broaden your Hadoop skill set and take your knowledge to the next level? Do you wish to enhance your knowledge of Hadoop to solve challenging data processing problems? Are your Hadoop jobs, Pig scripts, or Hive queries not working as fast as you intend? Are you looking to understand the benefits of upgrading Hadoop? If the answer is yes to any of these, this book is for you. It assumes novice-level familiarity with Hadoop.

MapReduce Design Patterns

Building Effective Algorithms and Analytics for Hadoop and Other Systems

Author: Donald Miner,Adam Shook

Publisher: "O'Reilly Media, Inc."

ISBN: 1449341985

Category: Computers

Page: 250

View: 8725

DOWNLOAD NOW »
Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using. Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop. Summarization patterns: get a top-level view by summarizing and grouping data Filtering patterns: view data subsets such as records generated from one user Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier Join patterns: analyze different datasets together to discover interesting relationships Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job Input and output patterns: customize the way you use Hadoop to load or store data "A clear exposition of MapReduce programs for common data processing patterns—this book is indespensible for anyone using Hadoop." --Tom White, author of Hadoop: The Definitive Guide

Getting Started with Impala

Interactive SQL for Apache Hadoop

Author: John Russell

Publisher: "O'Reilly Media, Inc."

ISBN: 1491905727

Category: Computers

Page: 152

View: 6282

DOWNLOAD NOW »
Learn how to write, tune, and port SQL queries and other statements for a Big Data environment, using Impala—the massively parallel processing SQL query engine for Apache Hadoop. The best practices in this practical guide help you design database schemas that not only interoperate with other Hadoop components, and are convenient for administers to manage and monitor, but also accommodate future expansion in data size and evolution of software capabilities. Written by John Russell, documentation lead for the Cloudera Impala project, this book gets you working with the most recent Impala releases quickly. Ideal for database developers and business analysts, the latest revision covers analytics functions, complex types, incremental statistics, subqueries, and submission to the Apache incubator. Getting Started with Impala includes advice from Cloudera’s development team, as well as insights from its consulting engagements with customers. Learn how Impala integrates with a wide range of Hadoop components Attain high performance and scalability for huge data sets on production clusters Explore common developer tasks, such as porting code to Impala and optimizing performance Use tutorials for working with billion-row tables, date- and time-based values, and other techniques Learn how to transition from rigid schemas to a flexible model that evolves as needs change Take a deep dive into joins and the roles of statistics

Hadoop Application Architectures

Designing Real-World Big Data Applications

Author: Mark Grover,Ted Malaska,Jonathan Seidman,Gwen Shapira

Publisher: "O'Reilly Media, Inc."

ISBN: 1491900059

Category: Computers

Page: 400

View: 9022

DOWNLOAD NOW »
Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case. To reinforce those lessons, the book’s second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you’re designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process. This book covers: Factors to consider when using Hadoop to store and model data Best practices for moving data in and out of the system Data processing frameworks, including MapReduce, Spark, and Hive Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics Giraph, GraphX, and other tools for large graph processing on Hadoop Using workflow orchestration and scheduling tools such as Apache Oozie Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume Architecture examples for clickstream analysis, fraud detection, and data warehousing

Apache Oozie

The Workflow Scheduler for Hadoop

Author: Mohammad Kamrul Islam,Aravind Srinivasan

Publisher: "O'Reilly Media, Inc."

ISBN: 1449369774

Category: Computers

Page: 272

View: 2732

DOWNLOAD NOW »
Get a solid grounding in Apache Oozie, the workflow scheduler system for managing Hadoop jobs. With this hands-on guide, two experienced Hadoop practitioners walk you through the intricacies of this powerful and flexible platform, with numerous examples and real-world use cases. Once you set up your Oozie server, you’ll dive into techniques for writing and coordinating workflows, and learn how to write complex data pipelines. Advanced topics show you how to handle shared libraries in Oozie, as well as how to implement and manage Oozie’s security capabilities. Install and configure an Oozie server, and get an overview of basic concepts Journey through the world of writing and configuring workflows Learn how the Oozie coordinator schedules and executes workflows based on triggers Understand how Oozie manages data dependencies Use Oozie bundles to package several coordinator apps into a data pipeline Learn about security features and shared library management Implement custom extensions and write your own EL functions and actions Debug workflows and manage Oozie’s operational details

Hadoop For Dummies

Author: Dirk deRoos,Paul Zikopoulos,Bruce Brown,Rafael Coss,Roman B. Melnyk

Publisher: John Wiley & Sons

ISBN: 1118607554

Category: Computers

Page: 394

View: 1921

DOWNLOAD NOW »
Let Hadoop For Dummies help harness the power of your data and rein in the information overload Big data has become big business, and companies and organizations of all sizes are struggling to find ways to retrieve valuable information from their massive data sets with becoming overwhelmed. Enter Hadoop and this easy-to-understand For Dummies guide. Hadoop For Dummies helps readers understand the value of big data, make a business case for using Hadoop, navigate the Hadoop ecosystem, and build and manage Hadoop applications and clusters. Explains the origins of Hadoop, its economic benefits, and its functionality and practical applications Helps you find your way around the Hadoop ecosystem, program MapReduce, utilize design patterns, and get your Hadoop cluster up and running quickly and easily Details how to use Hadoop applications for data mining, web analytics and personalization, large-scale text processing, data science, and problem-solving Shows you how to improve the value of your Hadoop cluster, maximize your investment in Hadoop, and avoid common pitfalls when building your Hadoop cluster From programmers challenged with building and maintaining affordable, scaleable data systems to administrators who must deal with huge volumes of information effectively and efficiently, this how-to has something to help you with Hadoop.