Photosystem II

The Light-Driven Water:Plastoquinone Oxidoreductase

Author: T. Wydrzynski,Kimiyuki Satoh

Publisher: Springer Science & Business Media

ISBN: 140204254X

Category: Science

Page: 786

View: 7235

DOWNLOAD NOW »
The most mysterious part of photosynthesis yet the most important for all aerobic life on Earth (including ourselves) is how green plants, algae and cyanobacteria make atmospheric oxygen from water. This thermodynamically difficult process is only achieved in Nature by the unique pigment/protein complex known as Photosystem II, using sunlight to power the reaction. The present volume contains 34 comprehensive chapters authored by 75 scientific experts from around the world. It gives an up-to-date account on all what is currently known about the molecular biology, biochemistry, biophysics and physiology of Photosystem II. The book is divided into several parts detailing the protein constituents, functional sites, tertiary structure, molecular dynamics, and mechanisms of homeostasis. The book ends with a comparison of Photosystem II with other related enzymes and bio-mimetic systems. Since the unique water-splitting chemistry catalyzed by Photosystem II leads to the production of pure oxygen gas and has the potential for making hydrogen gas, a primary goal of this book is to provide a molecular guide to future protein engineers and bio-mimetic chemists in the development of biocatalysts for the generation of clean, renewable energy from sunlight and water.

Assembly of the Photosystem II Membrane-Protein Complex of Oxygenic Photosynthesis

Author: Julian J. Eaton-Rye,Roman Sobotka

Publisher: Frontiers Media SA

ISBN: 2889452336

Category:

Page: N.A

View: 1456

DOWNLOAD NOW »
Photosystem II is a 700-kDa membrane-protein super-complex responsible for the light-driven splitting of water in oxygenic photosynthesis. The photosystem is comprised of two 350-kDa complexes each made of 20 different polypeptides and over 80 co-factors. While there have been major advances in understanding the mature structure of this photosystem many key protein factors involved in the assembly of the complex do not appear in the holoenzyme. The mechanism for assembling this super-complex is a very active area of research with newly discovered assembly factors and subcomplexes requiring characterization. Additionally the ability to split water is inseparable from light-induced photodamage that arises from radicals and reactive O2 species generated by Photosystem II chemistry. Consequently, to sustain water splitting, a “self repair” cycle has evolved whereby damaged protein is removed and replaced so as to extend the working life of the complex. Understanding how the biogenesis and repair processes are coordinated is among several important questions that remain to be answered. Other questions include: how and when are the inorganic cofactors inserted during the assembly and repair processes and how are the subcomplexes protected from photodamage during assembly? Evidence has also been obtained for Photosystem II biogenesis centers in cyanobacteria but do these also exist in plants? Do the molecular mechanisms associated with Photosystem II assembly shed fresh light on the assembly of other major energy-transducing complexes such as Photosystem I or the cytochrome b6/f complex or indeed other respiratory complexes? The contributions to this Frontiers in Plant Science Research Topic are likely to reveal new details applicable to the assembly of a range of membrane-protein complexes, including aspects of self-assembly and solar energy conversion that may be applied to artificial photosynthetic systems. In addition, a deeper understanding of Photosystem II assembly — particularly in response to changing environmental conditions — will provide new knowledge underpinning photosynthetic yields which may contribute to improved food production and long-term food security.

Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases

Author: Peter M.H. Kroneck,Martha E. Sosa Torres

Publisher: Springer

ISBN: 3319124153

Category: Medical

Page: 329

View: 8207

DOWNLOAD NOW »
MILS-15 provides an up-to-date review of the metalloenzymes involved in the activation, production, and conversion of molecular oxygen as well as the functionalization of the chemically inert gases methane and ammonia. Found either in aerobes (humans, animals, plants, microorganisms) or in anaerobes (so-called “impossible bacteria”) these enzymes employ preferentially iron and copper at their active sites, in order to conserve energy by redox-driven proton pumps, to convert methane to methanol, or ammonia to hydroxylamine or other compounds. When it comes to the light-driven production of molecular oxygen, the tetranuclear manganese cluster of photosystem II must be regarded as the key player. However, dioxygen can also be produced in the dark, by heme iron-dependent dismutation of oxyanions. Metalloenzymes Mastering Dioxygen and Other Chewy Gases is a vibrant research area based mainly on structural and microbial biology, inorganic biological chemistry, and environmental biochemistry. All this is covered in an authoritative manner in 7 stimulating chapters, written by 21 internationally recognized experts, and supported by nearly 1100 references, informative tables, and over 140 illustrations (many in color). MILS-15 provides excellent information for teaching; it is also closely related to MILS-14, The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Peter M. H. Kroneck is a bioinorganic chemist who is exploring the role of transition metals in biology, with a focus on functional and structural aspects of microbial iron, copper, and molybdenum enzymes and their impact on the biogeochemical cyles of nitrogen and sulfur. Martha E. Sosa Torres is an inorganic chemist, with special interests in magnetic properties of newly synthesized transition metal complexes and their reactivity towards molecular oxygen, applying kinetic, electrochemical, and spectroscopic techniques.

Concepts in Photobiology

Photosynthesis and Photomorphogenesis

Author: G. S. Singhal

Publisher: Springer Science & Business Media

ISBN: 9780792355199

Category: Nature

Page: 1019

View: 814

DOWNLOAD NOW »
This text brings together various aspects of photosynthesis, biology of pigments, light regulation of chloroplast development, nuclear and chloroplast gene expression, light signal transduction, other photomorphogenetic processes and some photoecological aspects under one cover.

The Oxygen Evolving System of Photosynthesis

Author: Yorinao Inoue,Norio Murata,Antony R. Crofts

Publisher: Academic Press

ISBN: 1483281612

Category: Science

Page: 482

View: 4086

DOWNLOAD NOW »
The Oxygen Evolving System of Photosynthesis documents the proceedings of an international symposium entitled ""Photosynthetic Water Oxidation and Photosystem II Photochemistry,"" held at The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, Japan, 15-17 March 1983. Several other papers from authorities in this field are also included. This book provides in a systematic fashion the most current thoughts and insights into the field of photosynthetic oxygen evolution. The volume contains 46 chapters organized into five parts. Part I deals with the subunit structure of photosystem II reaction center pigment proteins and the charge separation (generation of positive and negative charges, P680+ and Pheo-). Part II examines the components and their function on the donor side. Part III discusses the biochemistry of the water oxidation enzyme system, polypeptide composition, and functional reconstitution. Part IV take up the functions of chloride and bicarbonate in electron transport and the mechanism of photoactivation in latent or Tris-inactivated chloroplasts. Part V discusses the fate of reducing equivalents going through the two-electron gate mechanism, together with the biochemistry of the quinone components on the acceptor side.

The Photosystems

Structure, Function and Molecular Biology

Author: J. Barber

Publisher: Elsevier

ISBN: 1483291367

Category: Science

Page: 557

View: 5310

DOWNLOAD NOW »
There is very little in this eleventh volume of Topics in Photosynthesis which could have been written when the first volume was published fifteen years ago. Advances over the last decade have been spectacular, most particularly in our understanding of the photosystems that is the subject of this volume. After a comparative introducution of bacterial and plant photosystems, the book begins with a consideration of what is theoretically possible in energy conversion. This is followed by light harvesting in photosystems II, followed by its molecular biology, protein engineering, thermoluminescence, photoinhibition, the effect of herbicides and heat shock, and, most important function of all and one about which so little is yet understood at the molecular level, the process by which it evolves oxygen. The last three chapters deal with the equivalent processes of photosystem I. The whole volume tells the story of a natural system of incredible ingenuity and complexity, but which as the chapters unfold, is seen to be within our grasp and eventual ability to comprehend.

Light-Harvesting Antennas in Photosynthesis

Author: Beverley Green,W.W. Parson

Publisher: Springer Science & Business Media

ISBN: 9780792363354

Category: Science

Page: 513

View: 3044

DOWNLOAD NOW »
Light-Harvesting Antennas in Photosynthesis is concerned with the most important process on earth - the harvesting of light energy by photosynthetic organisms. This book provides a comprehensive treatment of all aspects of photosynthetic light-harvesting antennas, from the biophysical mechanisms of light absorption and energy transfer to the structure, biosynthesis and regulation of antenna systems in whole organisms. It sets the great variety of antenna pigment-protein complexes in their evolutionary context and at the same time brings in the latest hi-tech developments. The book is unique in the degree to which it emphasizes the integration of molecular biological, biochemical and biophysical approaches. Overall, a well-organized, understandable, and comprehensive volume. It will be a valuable resource for both graduate students and their professors, and a helpful library reference book for undergraduates.

The Photosynthetic Bacterial Reaction Center II

Structure, Spectroscopy and Dynamics

Author: Jacques Breton,Andre Verméglio

Publisher: Springer Science & Business Media

ISBN: 1461530504

Category: Science

Page: 429

View: 3439

DOWNLOAD NOW »
The NATO Advanced Research Workshop entitled "The Photosynthetic Bacterial Reaction Center: Structure, Spectroscopy, and Dynamics" was held May 10-15, 1992, in the Maison d'H6tes of the Centre d'Etudes Nuc1eaires de Cadarache near Aix-en-Provence in the south of France. This workshop is the most recent of a string of meetings which started in Feldafing (Germany) in March 1985, soon after the three-dimensional structure of the bacterial reaction center had been elucidated by X-ray crystallography. This was followed, in September 1987, by a workshop in Cadarache and, in March 1990, by a second meeting in Feldafing. Although one of the most important processes on Earth, photosynthesis is still poorly understood. Stimulated by the breakthrough of solving the bacterial reaction center structure at atomic resolution, the field of relating this structure to the function of the reaction center, i. e. the remarkably efficient conversion and storage of solar energy, has been developing vigorously. Once the general organization of the cofactors and some details of the protein-cofactor interactions were known, it became possible to combine a variety of spectroscopic techniques with the powerful tool of site-directed mutagenesis in order to address increasingly incisive questions about the specific role of some amino acid residues in the electron transfer process. Still another promising tool is being developed, namely the exchange of a number of the native bacteriochlorophyll and bacteriopheophytin cofactors by chemically modified pigments.

Primary Processes of Photosynthesis, Part 2

Principles and Apparatus

Author: Gernot Renger

Publisher: Royal Society of Chemistry

ISBN: 184755816X

Category: Science

Page: 592

View: 4425

DOWNLOAD NOW »
This volume forms part of a two-volume set and is not available for individual purchase. Please view the complete pack (ISBN: 978-0-85404-364-4) for purchase options.

Physicochemical and Environmental Plant Physiology

Author: Park S. Nobel

Publisher: Academic Press

ISBN: 9780125200257

Category: Gardening

Page: 474

View: 8568

DOWNLOAD NOW »
The functioning of all living systems obeys the laws of physics in fundamental ways. This is true for all physiological processes that occur inside cells, tissues, organs, and organisms. The new edition of Park Nobel's classic text has been revised in an unprecedented fashion, while still remaining user-friendly and clearly presented. Certain to maintain its leading role in teaching general and comparative physiological principles, Physicochemical and Environmental Plant Physiology now establishes a new standard of excellence in teaching advanced physiology.The book covers water relations and ion transport for plant cells, including diffusion, chemical potential gradients, and solute movement in and out of plant cells. It also presents the interconnection of various energy forms, such as light, chlorophyll and accessory photosynthesis pigments, and ATP and NADPH. Additionally, the book describes the forms in which energy and matter enter and leave a plant, for example: energy budget analysis, water vapor and carbon dioxide, and water movement from soil to plant to atmosphere.

Molecular Biology of the Cell

Author: Bruce Alberts

Publisher: Garland Science

ISBN: 1317563743

Category: Science

Page: 1464

View: 8134

DOWNLOAD NOW »
As the amount of information in biology expands dramatically, it becomes increasingly important for textbooks to distill the vast amount of scientific knowledge into concise principles and enduring concepts.As with previous editions, Molecular Biology of the Cell, Sixth Edition accomplishes this goal with clear writing and beautiful illustrations. The Sixth Edition has been extensively revised and updated with the latest research in the field of cell biology, and it provides an exceptional framework for teaching and learning. The entire illustration program has been greatly enhanced.Protein structures better illustrate structure–function relationships, icons are simpler and more consistent within and between chapters, and micrographs have been refreshed and updated with newer, clearer, or better images. As a new feature, each chapter now contains intriguing openended questions highlighting “What We Don’t Know,” introducing students to challenging areas of future research. Updated end-of-chapter problems reflect new research discussed in the text, and these problems have been expanded to all chapters by adding questions on developmental biology, tissues and stem cells, pathogens, and the immune system.

Handbook of Photosynthesis, Second Edition

Author: Mohammad Pessarakli

Publisher: CRC Press

ISBN: 9780824797089

Category: Science

Page: 1056

View: 7428

DOWNLOAD NOW »
"Details all of the photosynthetic factors and processes under both normal and stressful conditions--covering lower and higher plants as well as related biochemistry and plant molecular biology. Contains authoritative contributions from over 125 experts in the field from 28 countries, and includes almost 500 drawings, photographs, micrographs, tables, and equations--reinforcing and clarifying important text material."

The Photosystems

Structure, Function and Molecular Biology

Author: J. Barber

Publisher: Elsevier

ISBN: 1483291367

Category: Science

Page: 557

View: 2066

DOWNLOAD NOW »
There is very little in this eleventh volume of Topics in Photosynthesis which could have been written when the first volume was published fifteen years ago. Advances over the last decade have been spectacular, most particularly in our understanding of the photosystems that is the subject of this volume. After a comparative introducution of bacterial and plant photosystems, the book begins with a consideration of what is theoretically possible in energy conversion. This is followed by light harvesting in photosystems II, followed by its molecular biology, protein engineering, thermoluminescence, photoinhibition, the effect of herbicides and heat shock, and, most important function of all and one about which so little is yet understood at the molecular level, the process by which it evolves oxygen. The last three chapters deal with the equivalent processes of photosystem I. The whole volume tells the story of a natural system of incredible ingenuity and complexity, but which as the chapters unfold, is seen to be within our grasp and eventual ability to comprehend.