*Finite Difference Methods*

Author: Gordon D. Smith

Publisher: Oxford University Press

ISBN: 9780198596509

Category: Mathematics

Page: 337

View: 1421

*Finite Difference Methods*

Author: Gordon D. Smith

Publisher: Oxford University Press

ISBN: 9780198596509

Category: Mathematics

Page: 337

View: 1421

Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.

*An Introduction*

Author: K. W. Morton,D. F. Mayers

Publisher: Cambridge University Press

ISBN: 1139443208

Category: Mathematics

Page: N.A

View: 3513

This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

*Practical Aspects and Applications*

Author: Ivan Dimov,Zahari Zlatev,István Faragó,Ágnes Havasi

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110533006

Category: Mathematics

Page: 309

View: 4761

Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions

Author: Santanu Saha Ray

Publisher: CRC Press

ISBN: 149872728X

Category: Mathematics

Page: 235

View: 6406

Introduces Novel Applications for Solving Neutron Transport Equations While deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavior of nuclear reactors. It applies fractional calculus to incorporate the mathematical methods used to analyze the diffusion theory model of neutron transport and explains the role of neutron transport in reactor theory. The author discusses fractional calculus and the numerical solution for fractional neutron point kinetic equation (FNPKE), introduces the technique for efficient and accurate numerical computation for FNPKE with different values of reactivity, and analyzes the fractional neutron point kinetic (FNPK) model for the dynamic behavior of neutron motion. The book begins with an overview of nuclear reactors, explains how nuclear energy is extracted from reactors, and explores the behavior of neutron density using reactivity functions. It also demonstrates the applicability of the Haar wavelet method and introduces the neutron diffusion concept to aid readers in understanding the complex behavior of average neutron motion. This text: Applies the effective analytical and numerical methods to obtain the solution for the NDE Determines the numerical solution for one-group delayed neutron FNPKE by the explicit finite difference method Provides the numerical solution for classical as well as fractional neutron point kinetic equations Proposes the Haar wavelet operational method (HWOM) to obtain the numerical approximate solution of the neutron point kinetic equation, and more Fractional Calculus with Applications for Nuclear Reactor Dynamics thoroughly and systematically presents the concepts of fractional calculus and emphasizes the relevance of its application to the nuclear reactor.

Author: Yehuda Pinchover,Jacob Rubinstein

Publisher: Cambridge University Press

ISBN: 9780521848862

Category: Mathematics

Page: 371

View: 1028

A complete introduction to partial differential equations. A textbook aimed at students of mathematics, physics and engineering.

*Steady-State and Time-Dependent Problems*

Author: Randall J. LeVeque

Publisher: SIAM

ISBN: 9780898717839

Category: Differential equations

Page: 339

View: 1284

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Author: John Strikwerda

Publisher: SIAM

ISBN: 089871639X

Category: Mathematics

Page: 434

View: 4540

A unified and accessible introduction to the basic theory of finite difference schemes.

*Analytical and Numerical Methods, Second Edition*

Author: Mark S. Gockenbach

Publisher: SIAM

ISBN: 0898719356

Category: Mathematics

Page: 654

View: 8440

A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.

Author: Alfio Maria Quarteroni,Riccardo Sacco,Fausto Saleri

Publisher: Springer

ISBN: 0387227504

Category: Mathematics

Page: 655

View: 8593

The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.

*Finite Difference and Finite Volume Methods*

Author: Sandip Mazumder

Publisher: Academic Press

ISBN: 0128035048

Category: Technology & Engineering

Page: 484

View: 2562

Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives

Author: John Crank

Publisher: Oxford University Press

ISBN: 9780198534112

Category: Mathematics

Page: 414

View: 1458

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.

Author: Raymond Hill

Publisher: Oxford University Press

ISBN: 9780198538035

Category: Technology & Engineering

Page: 251

View: 8354

Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.

*as printed in Mathematical reviews*

Author: American Mathematical Society

Publisher: Amer Mathematical Society

ISBN: 9780821801024

Category: Mathematics

Page: 627

View: 7497

Author: Granville Sewell

Publisher: World Scientific

ISBN: 9814635111

Category: Mathematics

Page: 348

View: 1997

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

Author: D. J. Acheson

Publisher: Oxford University Press

ISBN: 0198596790

Category: Mathematics

Page: 397

View: 1188

This textbook provides a clear and concise introduction to both theory and application of fluid dynamics, suitable for all undergraduates coming to the subject for the first time. It has a wide scope, with frequent references to experiments, and numerous exercises illustrating the main ideas.

Author: Munawar Hussain Chaudry

Publisher: N.A

ISBN: N.A

Category: Heat

Page: 206

View: 3176