Author: Michèle Audin,Mihai Damian

Publisher: Springer Science & Business Media

ISBN: 1447154967

Category: Mathematics

Page: 596

View: 416

Author: Michèle Audin,Mihai Damian

Publisher: Springer Science & Business Media

ISBN: 1447154967

Category: Mathematics

Page: 596

View: 416

This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.

Author: Paul Seidel

Publisher: European Mathematical Society

ISBN: 9783037190630

Category: Mathematics

Page: 326

View: 5709

Author: Helmut Hofer,Eduard Zehnder

Publisher: Springer Science & Business Media

ISBN: 9783034801041

Category: Mathematics

Page: 341

View: 8234

The discoveries of the last decades have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic mappings is very different from that of volume preserving mappings. This raises new questions, many of them still unanswered. On the other hand, analysis of an old variational principle in classical mechanics has established global periodic phenomena in Hamiltonian systems. As it turns out, these seemingly different phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book, which includes such topics as basic symplectic geometry, symplectic capacities and rigidity, periodic orbits for Hamiltonian systems and the action principle, a bi-invariant metric on the symplectic diffeomorphism group and its geometry, symplectic fixed point theory, the Arnold conjectures and first order elliptic systems, and finally a survey on Floer homology and symplectic homology. The exposition is self-contained and addressed to researchers and students from the graduate level onwards.

Author: Liviu Nicolaescu

Publisher: Springer Science & Business Media

ISBN: 9781461411055

Category: Mathematics

Page: 353

View: 8609

This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.

Author: Michèle Audin,Ana Cannas da Silva,Eugene Lerman

Publisher: Birkhäuser

ISBN: 3034880715

Category: Mathematics

Page: 226

View: 8543

Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. This book serves as an introduction to symplectic and contact geometry for graduate students, exploring the underlying geometry of integrable Hamiltonian systems. Includes exercises designed to complement the expositiont, and up-to-date references.

Author: Jürgen Jost

Publisher: Springer

ISBN: 3319618601

Category: Mathematics

Page: 697

View: 1994

This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:“This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome.” Mathematical Reviews “For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field.” Monatshefte für Mathematik

Author: Augustin Banyaga,David Hurtubise

Publisher: Springer Science & Business Media

ISBN: 9781402026959

Category: Mathematics

Page: 324

View: 1508

This book presents in great detail all the results one needs to prove the Morse Homology Theorem using classical techniques from algebraic topology and homotopy theory. Most of these results can be found scattered throughout the literature dating from the mid to late 1900's in some form or other, but often the results are proved in different contexts with a multitude of different notations and different goals. This book collects all these results together into a single reference with complete and detailed proofs. The core material in this book includes CW-complexes, Morse theory, hyperbolic dynamical systems (the Lamba-Lemma, the Stable/Unstable Manifold Theorem), transversality theory, the Morse-Smale-Witten boundary operator, and Conley index theory. More advanced topics include Morse theory on Grassmann manifolds and Lie groups, and an overview of Floer homology theories. With the stress on completeness and by its elementary approach to Morse homology, this book is suitable as a textbook for a graduate level course, or as a reference for working mathematicians and physicists.

*Smooth and Discrete*

Author: Kevin P Knudson

Publisher: World Scientific Publishing Company

ISBN: 9814630985

Category: Mathematics

Page: 196

View: 3349

Morse Theory: Smooth and Discrete serves as an introduction to classical smooth Morse theory and to Forman's discrete Morse theory, highlighting the parallels between the two subjects. This is the first time both smooth and discrete Morse theory have been treated in a single volume. This makes the book a valuable resource for students and professionals working in topology and discrete mathematics. With a strong focus on examples, the text is suitable for advanced undergraduates or beginning graduate students.

*Symplectic Geometry of Affine Complex Manifolds*

Author: Kai Cieliebak,Y. Eliashberg

Publisher: American Mathematical Soc.

ISBN: 0821885332

Category: Mathematics

Page: 364

View: 9022

A beautiful and comprehensive introduction to this important field. --Dusa McDuff, Barnard College, Columbia University This excellent book gives a detailed, clear, and wonderfully written treatment of the interplay between the world of Stein manifolds and the more topological and flexible world of Weinstein manifolds. Devoted to this subject with a long history, the book serves as a super introduction to this area and also contains the authors' new results. --Tomasz Mrowka, MIT This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from ``Stein to Weinstein'') and its applications in the complex geometric world of Stein manifolds (the road ``back''). This is the first book which systematically explores this connection, thus providing a new approach to the classical subject of Stein manifolds. It also contains the first detailed investigation of Weinstein manifolds, the symplectic counterparts of Stein manifolds, which play an important role in symplectic and contact topology. Assuming only a general background from differential topology, the book provides introductions to the various techniques from the theory of functions of several complex variables, symplectic geometry, $h$-principles, and Morse theory that enter the proofs of the main results. The main results of the book are original results of the authors, and several of these results appear here for the first time. The book will be beneficial for all students and mathematicians interested in geometric aspects of complex analysis, symplectic and contact topology, and the interconnections between these subjects.|This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from ""Stein to Weinstein"") and its applications in the complex geometric world of Stein manifolds (the road ""back""). This is the first book which systematically explores this connection, thus providing a new approach to the classical subject of Stein manifolds. It also contains the first detailed investigation of Weinstein manifolds, the symplectic counterparts of Stein manifolds, which play an important role in symplectic and contact topology.

Assuming only a general background from differential topology, the book provides introductions to the various techniques from the theory of functions of several complex variables, symplectic geometry, $h$-principles, and Morse theory that enter the proofs of the main results. The main results of the book are original results of the authors, and several of these results appear here for the first time. The book will be beneficial for all students and mathematicians interested in geometric aspects of complex analysis, symplectic and contact topology, and the interconnections between these subjects.

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 1461448093

Category: Mathematics

Page: 410

View: 1383

This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.

*An Introduction to Curvature*

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387227261

Category: Mathematics

Page: 226

View: 4937

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Author: Dusa McDuff,Dietmar Salamon

Publisher: American Mathematical Soc.

ISBN: 0821887467

Category: Mathematics

Page: 726

View: 6511

The theory of $J$-holomorphic curves has been of great importance since its introduction by Gromov in 1985. In mathematics, its applications include many key results in symplectic topology. It was also one of the main inspirations for the creation of Floer homology. In mathematical physics, it provides a natural context in which to define Gromov-Witten invariants and quantum cohomology, two important ingredients of the mirror symmetry conjecture.

The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology: there are two long chapters on applications, one concentrating on classical results in symplectic topology and the other concerned with quantum cohomology. The last chapter sketches some recent developments in Floer theory. The five appendices of the book provide necessary background related to the classical theory of linear elliptic operators, Fredholm theory, Sobolev spaces, as well as a discussion of the moduli space of genus zero stable curves and a proof of the positivity of intersections of $J$-holomorphic curves in four-dimensional manifolds. The second edition clarifies various arguments, corrects several mistakes in the first edition, includes some additional results in Chapter 10 and Appendices C and D, and updates the references to recent developments.

Author: Dusa McDuff,Dietmar Salamon

Publisher: Oxford University Press

ISBN: 0192514016

Category: Mathematics

Page: 632

View: 1907

Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.

Author: Peter S. Ozsváth,András I. Stipsicz,Zoltán Szabó

Publisher: American Mathematical Soc.

ISBN: 1470417375

Category: Homology theory

Page: 410

View: 3411

Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.

Author: Volker Runde

Publisher: Springer Science & Business Media

ISBN: 9780387257907

Category: Mathematics

Page: 176

View: 2921

Having evolved from Runde’s notes for an introductory topology course at the University of Alberta, this essential text provides a concise introduction to set-theoretic topology. In places, Runde’s text treats its material differently to other books on the subject, providing a fresh perspective.

Author: Yong-Geun Oh

Publisher: Cambridge University Press

ISBN: 1316381145

Category: Mathematics

Page: N.A

View: 6629

Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 1 covers the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. One novel aspect of this treatment is the uniform treatment of both closed and open cases and a complete proof of the boundary regularity theorem of weak solutions of pseudo-holomorphic curves with totally real boundary conditions. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.

*With Applications to the Standard Model of Particle Physics*

Author: Mark J.D. Hamilton

Publisher: Springer

ISBN: 3319684396

Category: Mathematics

Page: 658

View: 7144

The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of differentiable manifolds and special relativity is required, summarized in the appendix.

Author: Mark Goresky,Robert MacPherson

Publisher: Springer Science & Business Media

ISBN: 3642717144

Category: Mathematics

Page: 272

View: 5550

Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.

*The Classical Case*

Author: Stephen Bruce Sontz

Publisher: Springer

ISBN: 331914765X

Category: Science

Page: 280

View: 3918

This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.

Author: Stephan Mescher

Publisher: Springer

ISBN: 3319765841

Category: Mathematics

Page: 171

View: 7634

This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.