Learning Quantitative Finance with R

Author: Dr. Param Jeet,Prashant Vats

Publisher: Packt Publishing Ltd

ISBN: 1786465256

Category: Computers

Page: 284

View: 6898

Implement machine learning, time-series analysis, algorithmic trading and more About This Book Understand the basics of R and how they can be applied in various Quantitative Finance scenarios Learn various algorithmic trading techniques and ways to optimize them using the tools available in R. Contain different methods to manage risk and explore trading using Machine Learning. Who This Book Is For If you want to learn how to use R to build quantitative finance models with ease, this book is for you. Analysts who want to learn R to solve their quantitative finance problems will also find this book useful. Some understanding of the basic financial concepts will be useful, though prior knowledge of R is not required. What You Will Learn Get to know the basics of R and how to use it in the field of Quantitative Finance Understand data processing and model building using R Explore different types of analytical techniques such as statistical analysis, time-series analysis, predictive modeling, and econometric analysis Build and analyze quantitative finance models using real-world examples How real-life examples should be used to develop strategies Performance metrics to look into before deciding upon any model Deep dive into the vast world of machine-learning based trading Get to grips with algorithmic trading and different ways of optimizing it Learn about controlling risk parameters of financial instruments In Detail The role of a quantitative analyst is very challenging, yet lucrative, so there is a lot of competition for the role in top-tier organizations and investment banks. This book is your go-to resource if you want to equip yourself with the skills required to tackle any real-world problem in quantitative finance using the popular R programming language. You'll start by getting an understanding of the basics of R and its relevance in the field of quantitative finance. Once you've built this foundation, we'll dive into the practicalities of building financial models in R. This will help you have a fair understanding of the topics as well as their implementation, as the authors have presented some use cases along with examples that are easy to understand and correlate. We'll also look at risk management and optimization techniques for algorithmic trading. Finally, the book will explain some advanced concepts, such as trading using machine learning, optimizations, exotic options, and hedging. By the end of this book, you will have a firm grasp of the techniques required to implement basic quantitative finance models in R. Style and approach This book introduces you to the essentials of quantitative finance with the help of easy-to-understand, practical examples and use cases in R. Each chapter presents a specific financial concept in detail, backed with relevant theory and the implementation of a real-life example.

Introduction to R for Quantitative Finance

Author: Gergely Daróczi,Michael Puhle,Edina Berlinger,Péter Csóka,Daniel Havran,Márton Michaletzky,Zsolt Tulassay,Kata Váradi,Agnes Vidovics-Dancs

Publisher: Packt Publishing Ltd

ISBN: 1783280948

Category: Computers

Page: 164

View: 2229

This book is a tutorial guide for new users that aims to help you understand the basics of and become accomplished with the use of R for quantitative finance.If you are looking to use R to solve problems in quantitative finance, then this book is for you. A basic knowledge of financial theory is assumed, but familiarity with R is not required. With a focus on using R to solve a wide range of issues, this book provides useful content for both the R beginner and more experience users.

Mastering R for Quantitative Finance

Author: Edina Berlinger,Ferenc Illés,Milán Badics,Ádám Banai,Gergely Daróczi,Barbara Dömötör,Gergely Gabler,Dániel Havran,Péter Juhász,István Margitai,Balázs Márkus,Péter Medvegyev,Julia Molnár,Balázs Árpád Szűcs,Ágnes Tuza,Tamás Vadász,Kata Váradi,Ágnes Vidovics-Dancs

Publisher: Packt Publishing Ltd

ISBN: 1783552085

Category: Computers

Page: 362

View: 6456

This book is intended for those who want to learn how to use R's capabilities to build models in quantitative finance at a more advanced level. If you wish to perfectly take up the rhythm of the chapters, you need to be at an intermediate level in quantitative finance and you also need to have a reasonable knowledge of R.

Financial Analytics with R

Author: Mark J. Bennett,Dirk L. Hugen

Publisher: Cambridge University Press

ISBN: 1107150752

Category: Business & Economics

Page: 390

View: 6179

Financial Analytics with R sharpens readers' skills in time-series, forecasting, portfolio selection, covariance clustering, prediction, and derivative securities.

Quantitative Trading with R

Understanding Mathematical and Computational Tools from a Quant’s Perspective

Author: Harry Georgakopoulos

Publisher: Springer

ISBN: 1137437472

Category: Business & Economics

Page: 272

View: 6280

Quantitative Finance with R offers a winning strategy for devising expertly-crafted and workable trading models using the R open source programming language, providing readers with a step-by-step approach to understanding complex quantitative finance problems and building functional computer code.

Automated Trading with R

Quantitative Research and Platform Development

Author: Chris Conlan

Publisher: Apress

ISBN: 1484221788

Category: Computers

Page: 205

View: 823

Learn to trade algorithmically with your existing brokerage, from data management, to strategy optimization, to order execution, using free and publicly available data. Connect to your brokerage’s API, and the source code is plug-and-play. Automated Trading with R explains automated trading, starting with its mathematics and moving to its computation and execution. You will gain a unique insight into the mechanics and computational considerations taken in building a back-tester, strategy optimizer, and fully functional trading platform. The platform built in this book can serve as a complete replacement for commercially available platforms used by retail traders and small funds. Software components are strictly decoupled and easily scalable, providing opportunity to substitute any data source, trading algorithm, or brokerage. This book will: Provide a flexible alternative to common strategy automation frameworks, like Tradestation, Metatrader, and CQG, to small funds and retail traders Offer an understanding of the internal mechanisms of an automated trading system Standardize discussion and notation of real-world strategy optimization problems What You Will Learn Understand machine-learning criteria for statistical validity in the context of time-series Optimize strategies, generate real-time trading decisions, and minimize computation time while programming an automated strategy in R and using its package library Best simulate strategy performance in its specific use case to derive accurate performance estimates Understand critical real-world variables pertaining to portfolio management and performance assessment, including latency, drawdowns, varying trade size, portfolio growth, and penalization of unused capital Who This Book Is For Traders/practitioners at the retail or small fund level with at least an undergraduate background in finance or computer science; graduate level finance or data science students

R for Programmers

Quantitative Investment Applications

Author: Dan Zhang

Publisher: CRC Press

ISBN: 1315352532

Category: Computers

Page: 370

View: 2748

After the fundamental volume and the advanced technique volume, this volume focuses on R applications in the quantitative investment area. Quantitative investment has been hot for some years, and there are more and more startups working on it, combined with many other internet communities and business models. R is widely used in this area, and can be a very powerful tool. The author introduces R applications with cases from his own startup, covering topics like portfolio optimization and risk management.

Python for Finance

Analyze Big Financial Data

Author: Yves Hilpisch

Publisher: "O'Reilly Media, Inc."

ISBN: 1491945389

Category: Computers

Page: 606

View: 4438

The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies


Author: Jack Xu

Publisher: Unicad

ISBN: 9780979372575

Category: Business & Economics

Page: 420

View: 6362

The book provides a complete explanation of R programming in quantitative finance. It demonstrates how to prototype quant models and backtest trading strategies. It pays special attention to creating business applications and reusable R libraries that can be directly used to solve real-world problems in quantitative finance.

Quantitative Risk Management

Concepts, Techniques and Tools

Author: Alexander J. McNeil,Rüdiger Frey,Paul Embrechts

Publisher: Princeton University Press

ISBN: 1400866286

Category: Business & Economics

Page: 720

View: 7313

This book provides the most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management. Whether you are a financial risk analyst, actuary, regulator or student of quantitative finance, Quantitative Risk Management gives you the practical tools you need to solve real-world problems. Describing the latest advances in the field, Quantitative Risk Management covers the methods for market, credit and operational risk modelling. It places standard industry approaches on a more formal footing and explores key concepts such as loss distributions, risk measures and risk aggregation and allocation principles. The book's methodology draws on diverse quantitative disciplines, from mathematical finance and statistics to econometrics and actuarial mathematics. A primary theme throughout is the need to satisfactorily address extreme outcomes and the dependence of key risk drivers. Proven in the classroom, the book also covers advanced topics like credit derivatives. Fully revised and expanded to reflect developments in the field since the financial crisis Features shorter chapters to facilitate teaching and learning Provides enhanced coverage of Solvency II and insurance risk management and extended treatment of credit risk, including counterparty credit risk and CDO pricing Includes a new chapter on market risk and new material on risk measures and risk aggregation

An Introduction to Quantitative Finance

Author: Stephen Blyth

Publisher: Oxford University Press

ISBN: 0199666598

Category: Business & Economics

Page: 175

View: 2539

The quantitative nature of complex financial transactions makes them a fascinating subject area for mathematicians of all types. This book gives an insight into financial engineering while building on introductory probability courses by detailing one of the most fascinating applications of the subject.

Advances in Financial Machine Learning

Author: Marcos Lopez de Prado

Publisher: John Wiley & Sons

ISBN: 1119482119

Category: Business & Economics

Page: 400

View: 6789

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Readers will learn how to structure Big data in a way that is amenable to ML algorithms; how to conduct research with ML algorithms on that data; how to use supercomputing methods; how to backtest your discoveries while avoiding false positives. The book addresses real-life problems faced by practitioners on a daily basis, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their particular setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Introduction to Quantitative Finance

A Math Tool Kit

Author: Robert R. Reitano

Publisher: MIT Press

ISBN: 026201369X

Category: Business & Economics

Page: 709

View: 8541

Mathematical logic -- Number systems and functions -- Euclidean and other spaces -- Set theory and topology -- Sequences and their convergence -- Series and their convergence -- Discrete probability theory -- Fundamental probablility theorems -- Calculus I : differentiation -- Calculus II : integration

An Introduction to Statistical Learning

with Applications in R

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 3632

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

How I Became a Quant

Insights from 25 of Wall Street's Elite

Author: Richard R. Lindsey,Barry Schachter

Publisher: John Wiley & Sons

ISBN: 9781118044759

Category: Business & Economics

Page: 386

View: 8687

Praise for How I Became a Quant "Led by two top-notch quants, Richard R. Lindsey and Barry Schachter, How I Became a Quant details the quirky world of quantitative analysis through stories told by some of today's most successful quants. For anyone who might have thought otherwise, there are engaging personalities behind all that number crunching!" --Ira Kawaller, Kawaller & Co. and the Kawaller Fund "A fun and fascinating read. This book tells the story of how academics, physicists, mathematicians, and other scientists became professional investors managing billions." --David A. Krell, President and CEO, International Securities Exchange "How I Became a Quant should be must reading for all students with a quantitative aptitude. It provides fascinating examples of the dynamic career opportunities potentially open to anyone with the skills and passion for quantitative analysis." --Roy D. Henriksson, Chief Investment Officer, Advanced Portfolio Management "Quants"--those who design and implement mathematical models for the pricing of derivatives, assessment of risk, or prediction of market movements--are the backbone of today's investment industry. As the greater volatility of current financial markets has driven investors to seek shelter from increasing uncertainty, the quant revolution has given people the opportunity to avoid unwanted financial risk by literally trading it away, or more specifically, paying someone else to take on the unwanted risk. How I Became a Quant reveals the faces behind the quant revolution, offering you?the?chance to learn firsthand what it's like to be a?quant today. In this fascinating collection of Wall Street war stories, more than two dozen quants detail their roots, roles, and contributions, explaining what they do and how they do it, as well as outlining the sometimes unexpected paths they have followed from the halls of academia to the front lines of an investment revolution.

The R Book

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 1118448960

Category: Mathematics

Page: 1080

View: 6748

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Quantitative Finance For Dummies

Author: Steve Bell

Publisher: John Wiley & Sons

ISBN: 1118769430

Category: Business & Economics

Page: 408

View: 3628

An accessible, thorough introduction to quantitative finance Does the complex world of quantitative finance make you quiver? You're not alone! It's a tough subject for even high-level financial gurus to grasp, but Quantitative Finance For Dummies offers plain-English guidance on making sense of applying mathematics to investing decisions. With this complete guide, you'll gain a solid understanding of futures, options and risk, and get up-to-speed on the most popular equations, methods, formulas and models (such as the Black-Scholes model) that are applied in quantitative finance. Also known as mathematical finance, quantitative finance is the field of mathematics applied to financial markets. It's a highly technical discipline—but almost all investment companies and hedge funds use quantitative methods. This fun and friendly guide breaks the subject of quantitative finance down to easily digestible parts, making it approachable for personal investors and finance students alike. With the help of Quantitative Finance For Dummies, you'll learn the mathematical skills necessary for success with quantitative finance, the most up-to-date portfolio and risk management applications and everything you need to know about basic derivatives pricing. Covers the core models, formulas and methods used in quantitative finance Includes examples and brief exercises to help augment your understanding of QF Provides an easy-to-follow introduction to the complex world of quantitative finance Explains how QF methods are used to define the current market value of a derivative security Whether you're an aspiring quant or a top-tier personal investor, Quantitative Finance For Dummies is your go-to guide for coming to grips with QF/risk management.

Advanced Quantitative Finance with C++

Author: Alonso Peña, Ph.D.

Publisher: Packt Publishing Ltd

ISBN: 1782167234

Category: Computers

Page: 124

View: 7557

The book takes the reader through a fast but structured crash-course in quantitative finance, from theory to practice. If you are a quantitative analyst, risk manager, actuary, or a professional working in the field of quantitative finance and want a quick hands-on introduction to the pricing of financial derivatives, this book is ideal for you. You should be familiar with the basic programming concepts and C++ programming language. You should also be acquainted with calculus of undergraduate level.

Quantitative Corpus Linguistics with R

A Practical Introduction

Author: Stefan Th. Gries

Publisher: Routledge

ISBN: 1135895597

Category: Education

Page: 248

View: 8403

The first textbook of its kind, Quantitative Corpus Linguistics with R demonstrates how to use the open source programming language R for corpus linguistic analyses. Computational and corpus linguists doing corpus work will find that R provides an enormous range of functions that currently require several programs to achieve – searching and processing corpora, arranging and outputting the results of corpus searches, statistical evaluation, and graphing.

The Quants

How a New Breed of Math Whizzes Conquered Wall Street and Nearly Destroyed It

Author: Scott Patterson

Publisher: Crown Business

ISBN: 9780307453396

Category: Business & Economics

Page: 352

View: 4564

With the immediacy of today’s NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris, and an ominous warning about Wall Street’s future. In March of 2006, four of the world’s richest men sipped champagne in an opulent New York hotel. They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions. On that night, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz--technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers--had usurped the testosterone-fueled, kill-or-be-killed risk-takers who’d long been the alpha males the world’s largest casino. The quants helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse. Few realized, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history’s greatest financial disaster. Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize--and wondered just how their mind-bending formulas and genius-level IQ’s had led them so wrong, so fast.