Laser-Beam Interactions with Materials

Physical Principles and Applications

Author: Martin v. Allmen,Andreas Blatter

Publisher: Springer Science & Business Media

ISBN: 3642578136

Category: Science

Page: 196

View: 4305

DOWNLOAD NOW »
Laser-Beam Interactions with Materials treats, from a physicist's point of view, the wide variety of processes that lasers can induce in materials. Physical phenomena ranging from optics to shock waves are discussed, as are applications in such diverse fields as semiconductor annealing, hole drilling and fusion plasma production. The approach taken emphasizes the fundamental ideas and their interrelations. The newcomer is given the necessary important background material, while the active research worker finds a critical and comprehensive review of the field.

The Theory of Laser Materials Processing

Heat and Mass Transfer in Modern Technology

Author: John Dowden,Wolfgang Schulz

Publisher: Springer

ISBN: 331956711X

Category: Technology & Engineering

Page: 432

View: 1259

DOWNLOAD NOW »
The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the display industry. A further addition is a chapter on meta-modelling, whose purpose is to construct fast, simple and reliable models based on appropriate sources of information. It then makes it easy to explore data visually and is a convenient interactive tool for scientists to improve the quality of their models and for developers when designing their processes. As in the first edition, the book ends with an updated introduction to comprehensive numerical simulation. Although the book focuses on laser interactions with materials, many of the principles and methods explored can be applied to thermal modelling in a variety of different fields and at different power levels. It is aimed principally however at academic and industrial researchers and developers in the field of laser technology.

Lasers in Materials Science

Author: Marta Castillejo,Paolo M. Ossi,Leonid Zhigilei

Publisher: Springer Science & Business Media

ISBN: 3319028987

Category: Technology & Engineering

Page: 387

View: 3045

DOWNLOAD NOW »
This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems. The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications. Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers in Materials Science which was held in Isola di San Servolo, Venice, Italy, in July, 2012.

Direct-write Technologies for Rapid Prototyping Applications

Sensors, Electronics, and Integrated Power Sources

Author: Alberto Piqué,Douglas B. Chrisey

Publisher: Academic Press

ISBN: 9780121742317

Category: Technology & Engineering

Page: 726

View: 5061

DOWNLOAD NOW »
Direct-Write Technologies covers applications, materials, and the techniques in using direct-write technologies. This book provides an overview of the different direct write techniques currently available, as well as a comparison between the strengths and special attributes for each of the techniques. The techniques described open the door for building prototypes and testing materials. The book also provides an overview of the state-of-the-art technology involved in this field. Basic academic researchers and industrial development engineers who pattern thin film materials will want to have this text on their shelves as a resource for specific applications. Others in this or related fields will want the book to read the introductory material summarizing isuses common to all approaches, in order to compare and contrast different techniques. Everyday applications include electronic components and sensors, especially chemical and biosensors. There is a wide range of research and development problems requiring state-of-the-art direct write tools. This book will appeal to basic researchers and development engineers in university engineering departments and at industrial and national research laboratories. This text should appeal equally well in the United States, Asia, and Europe. Both basic academic researchers and industrial development engineers who pattern thin film materials will want to have this text on their shelves as a resource for specific applications. An overview of the different direct write techniques currently available A comparison between the strengths and special attributes for each of the techniques An overview of the state-of-the-art technology involved in this field

Solid-State Lasers for Materials Processing

Fundamental Relations and Technical Realizations

Author: Reinhard Iffländer

Publisher: Springer

ISBN: 3540465855

Category: Science

Page: 353

View: 6061

DOWNLOAD NOW »
From the reviews: "Takes the reader on a journey that covers all the basic science and engineering related to the topic of developing a solid-state laser for common materials processing problems. [...] Entrants to the field will certainly find it a book to keep for future reference." Optics & Photonic News

Physics of Laser Materials Processing

Theory and Experiment

Author: Gennady G. Gladush,Igor Smurov

Publisher: Springer Science & Business Media

ISBN: 3642198317

Category: Technology & Engineering

Page: 534

View: 1893

DOWNLOAD NOW »
This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

Laser Ablation and Desorption

Author: N.A

Publisher: Academic Press

ISBN: 9780080860206

Category: Science

Page: 647

View: 5362

DOWNLOAD NOW »
This volume introduces the subject of laser ablation and desorption to scientists and engineers. It covers fundamental experimental and theoretical tools, models, and techniques, and introduces the most important applications. Clearly written and organized in a straightforward manner, Laser Ablation and Desorption lead the reader straight through the fundamentals of laser-surface interactions. Each chapter is self-contained and includes references to other chapters as necessary, so that readers may begin with the topic of greatest interest and follow the references to other aspects of the subject contained within the book. Key Features * Provides up-to-date information about one of the most active fields in physics today * Written and edited by major figures in the field of laser ablation and desorption * Represents the most comprehensive treatment of the state-of-the-art available

Laser Processing of Materials

Fundamentals, Applications and Developments

Author: Peter Schaaf

Publisher: Springer Science & Business Media

ISBN: 9783642132810

Category: Technology & Engineering

Page: 234

View: 4309

DOWNLOAD NOW »
Laser materials processing has made tremendous progress and is now at the forefront of industrial and medical applications. The book describes recent advances in smart and nanoscaled materials going well beyond the traditional cutting and welding applications. As no analytical methods are described the examples are really going into the details of what nowadways is possible by employing lasers for sophisticated materials processing giving rise to achievements not possible by conventional materials processing.

Optical Nano and Micro Actuator Technology

Author: George K. Knopf,Yukitoshi Otani

Publisher: CRC Press

ISBN: 1439840547

Category: Technology & Engineering

Page: 664

View: 9233

DOWNLOAD NOW »
In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS devices. It then covers innovative optical actuator technologies that have been developed for many applications. The book examines photoresponsive materials that enable the design of optically driven structures and mechanisms and describes specific light-driven technologies that permit the manipulation of micro- and nanoscale objects. It also explores applications in optofluidics, bioMEMS and biophotonics, medical device design, and micromachine control. Inspiring the next generation of scientists and engineers to advance light-driven technologies, this book gives readers a solid grounding in this emerging interdisciplinary area. It thoroughly explains the scientific language and fundamental principles, provides a holistic view of optical nano and micro actuator systems, and illustrates current and potential applications of light-driven systems.

Laser Interaction with Biological Material

Mathematical Modeling

Author: Kirill Kulikov

Publisher: Springer Science & Business Media

ISBN: 331901739X

Category: Science

Page: 149

View: 5134

DOWNLOAD NOW »
This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

Laser Ablation

Principles and Applications

Author: John C. Miller

Publisher: Springer Science & Business Media

ISBN: 3642787207

Category: Science

Page: 187

View: 1775

DOWNLOAD NOW »
Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

Pulsed Laser Ablation of Solids

Basics, Theory and Applications

Author: Mihai Stafe,Aurelian Marcu,Niculae Puscas

Publisher: Springer Science & Business Media

ISBN: 3642409784

Category: Science

Page: 233

View: 6665

DOWNLOAD NOW »
The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and dimensions of the ablated micro- and nano-structures are performed. The validity and required refinement of different models in different experimental conditions is provided. The pulsed laser deposition process which bases on collecting the ablated particles on a surface is analyzed in terms of efficiency and quality of the deposited films as a function of ambient conditions, target material, laser parameters and substrate characteristics. The interaction between the incident laser and the ablation plasma is analyzed with respect to its influence on the structures of the deposited films and its capacity to generate high harmonics and single attosecond pulses which are highly desirable in pump-probe experiments.

Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications

Author: Koji Sugioka,Ya Cheng

Publisher: Springer Science & Business Media

ISBN: 1447155416

Category: Technology & Engineering

Page: 129

View: 9234

DOWNLOAD NOW »
Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensional microfluidics, micromechanics, microelectronics and microoptics embedded in the glass. Further, these microcomponents can be easily integrated in a single glass microchip by the simple procedure using the femtosecond laser. Thus, the femtosecond laser processing provides some advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabrication of microfluidic, optofludic and lab-on-a-chip devices and thereby many researches on this topic are currently being carried out. This book presents a comprehensive review on the state of the art and future prospects of femtosecond laser processing for fabrication of microfluidics and optofludics including principle of femtosecond laser processing, detailed fabrication procedures of each microcomponent and practical applications to biochemical analysis.

Laser-Assisted Microtechnology

Author: Simeon M. Metev,Vadim P. Veiko

Publisher: Springer Science & Business Media

ISBN: 3642973272

Category: Technology & Engineering

Page: 240

View: 7508

DOWNLOAD NOW »
Laser-Assisted Microtechnology deals with laser applications to a wide variety of problems in microelectronic design and fabrication. It covers micromachining of thin films, microprocessing of materials, maskless laser micropatterning and laser-assisted synthesis of thin-film systems. The monograph describes fundamental aspects and practical details of the technological processes as well as the optimum conditions for their realization.

Semiconductor-Laser Fundamentals

Physics of the Gain Materials

Author: Weng W. Chow,Stephan W. Koch

Publisher: Springer Science & Business Media

ISBN: 3662038803

Category: Technology & Engineering

Page: 245

View: 7474

DOWNLOAD NOW »
This in-depth title discusses the underlying physics and operational principles of semiconductor lasers. It analyzes the optical and electronic properties of the semiconductor medium in detail, including quantum confinement and gain-engineering effects. The text also includes recent developments in blue-emitting semiconductor lasers.

Laser Processing of Thin Films and Microstructures

Oxidation, Deposition and Etching of Insulators

Author: Ian W. Boyd

Publisher: Springer Science & Business Media

ISBN: 3642831362

Category: Technology & Engineering

Page: 320

View: 5569

DOWNLOAD NOW »
This text aims at providing a comprehensive and up to date treatment of the new and rapidly expanding field of laser pro cessing of thin films, particularly, though by no means exclu sively, of recent progress in the dielectrics area. The volume covers all the major aspects of laser processing technology in general, from the background and history to its many potential applications, and from the theory to the necessary experimental considerations. It highlights and compares the vast array of processing conditions now available with intense photon beams, as well as the properties of the films and microstructures pro duced. Separate chapters deal with the fundamentals of laser interactions with matter, and with experimental considerations. Detailed consideration is also given to film deposition, nuclea tion and growth, oxidation and annealing, as well as selective and localized. etching and ablation, not only in terms of the various photon-induced processes, but also with respect to traditional as well as other competing new technologies.

Laser Precision Microfabrication

Author: Koji Sugioka,Michel Meunier,Alberto Piqué

Publisher: Springer

ISBN: 9783642105234

Category: Technology & Engineering

Page: 344

View: 6742

DOWNLOAD NOW »
Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.

Ultrashort Pulse Laser Technology

Laser Sources and Applications

Author: Stefan Nolte,Frank Schrempel,Friedrich Dausinger

Publisher: Springer

ISBN: 3319176595

Category: Technology & Engineering

Page: 358

View: 5442

DOWNLOAD NOW »
Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

High-Power Optics

Lasers and Applications

Author: Victor V. Apollonov

Publisher: Springer

ISBN: 3319107534

Category: Technology & Engineering

Page: 275

View: 9020

DOWNLOAD NOW »
This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature increase and response governed primarily by thermal properties and (iii) the thermo-optical and thermo-mechanical response of distortion, stress, fracture, etc. All this needs to be understood to design efficient, compact, reliable and useful high power systems for many applications under a variety of operating conditions, pulsed, continuous wave and burst mode of varying duty cycles. The book gives an overview of an important spectrum of related topics like laser resonator configurations, intermetallic optical coatings, heat carriers for high power optics, cellular materials, high-repetition-rate lasers and mono-module disk lasers for high power optics.

Laser-Induced Breakdown Spectroscopy

Theory and Applications

Author: Sergio Musazzi,Umberto Perini

Publisher: Springer

ISBN: 3642450857

Category: Technology & Engineering

Page: 565

View: 9687

DOWNLOAD NOW »
This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS) a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.