Introduction to the Basic Concepts of Modern Physics

Special Relativity, Quantum and Statistical Physics

Author: Carlo Maria Becchi,Massimo D'Elia

Publisher: Springer

ISBN: 3319206303

Category: Science

Page: 243

View: 9546

DOWNLOAD NOW »
This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third part addresses the application of Gibbs’ statistical methods to quantum systems and in particular to Bose and Fermi gases.

Basic Concepts in Physics

From the Cosmos to Quarks

Author: Masud Chaichian,Hugo Perez Rojas,Anca Tureanu

Publisher: Springer Science & Business Media

ISBN: 3642195989

Category: Science

Page: 377

View: 333

DOWNLOAD NOW »
"Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it.

From Special Relativity to Feynman Diagrams

A Course in Theoretical Particle Physics for Beginners

Author: Riccardo D'Auria,Mario Trigiante

Publisher: Springer

ISBN: 3319220144

Category: Science

Page: 601

View: 6424

DOWNLOAD NOW »
This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincaré groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.

Foundations of Quantum Mechanics

An Exploration of the Physical Meaning of Quantum Theory

Author: Travis Norsen

Publisher: Springer

ISBN: 3319658670

Category: Science

Page: 310

View: 329

DOWNLOAD NOW »
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.

Feynman Lectures On Computation

Author: Richard P. Feynman

Publisher: CRC Press

ISBN: 0429980078

Category: Science

Page: 324

View: 5691

DOWNLOAD NOW »
When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.

Statistical Approach to Quantum Field Theory

An Introduction

Author: Andreas Wipf

Publisher: Springer

ISBN: 364233105X

Category: Science

Page: 390

View: 4977

DOWNLOAD NOW »
Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an “experimental” tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems with discrete and continuous spins, where the ubiquitous Ising model serves as an ideal guide for introducing the fascinating area of phase transitions. As an alternative to the lattice formulation of quantum field theories, variants of the flexible renormalization group methods are discussed in detail. Since, according to our present-day knowledge, all fundamental interactions in nature are described by gauge theories, the remaining chapters of the book deal with gauge theories without and with matter. This text is based on course-tested notes for graduate students and, as such, its style is essentially pedagogical, requiring only some basics of mathematics, statistical physics, and quantum field theory. Yet it also contains some more sophisticated concepts which may be useful to researchers in the field. Each chapter ends with a number of problems – guiding the reader to a deeper understanding of some of the material presented in the main text – and, in most cases, also features some listings of short, useful computer programs.

Quantum Concepts in Physics

An Alternative Approach to the Understanding of Quantum Mechanics

Author: Malcolm Longair

Publisher: Cambridge University Press

ISBN: 1107310911

Category: Science

Page: N.A

View: 5792

DOWNLOAD NOW »
Written for advanced undergraduates, physicists, and historians and philosophers of physics, this book tells the story of the development of our understanding of quantum phenomena through the extraordinary years of the first three decades of the twentieth century. Rather than following the standard axiomatic approach, this book adopts a historical perspective, explaining clearly and authoritatively how pioneers such as Heisenberg, Schrodinger, Pauli and Dirac developed the fundamentals of quantum mechanics and merged them into a coherent theory, and why the mathematical infrastructure of quantum mechanics has to be as complex as it is. The author creates a compelling narrative, providing a remarkable example of how physics and mathematics work in practice. The book encourages an enhanced appreciation of the interaction between mathematics, theory and experiment, helping the reader gain a deeper understanding of the development and content of quantum mechanics than any other text at this level.

Special Relativity

Author: Valerio Faraoni

Publisher: Springer Science & Business Media

ISBN: 3319011073

Category: Science

Page: 304

View: 4404

DOWNLOAD NOW »
This book offers an essential bridge between college-level introductions and advanced graduate-level books on special relativity. It begins at an elementary level, presenting and discussing the basic concepts normally covered in college-level works, including the Lorentz transformation. Subsequent chapters introduce the four-dimensional worldview implied by the Lorentz transformations, mixing time and space coordinates, before continuing on to the formalism of tensors, a topic usually avoided in lower-level courses. The book’s second half addresses a number of essential points, including the concept of causality; the equivalence between mass and energy, including applications; relativistic optics; and measurements and matter in Minkowski space-time. The closing chapters focus on the energy-momentum tensor of a continuous distribution of mass-energy and its co-variant conservation; angular momentum; a discussion of the scalar field of perfect fluids and the Maxwell field; and general coordinates. Every chapter is supplemented by a section with numerous exercises, allowing readers to practice the theory. These exercises constitute an essential part of the textbook, and the solutions to approximately half of them are provided in the appendix.

An Introduction to Relativistic Processes and the Standard Model of Electroweak Interactions

Author: Carlo M. Becchi,Giovanni Ridolfi

Publisher: Springer

ISBN: 3319061305

Category: Science

Page: 198

View: 6954

DOWNLOAD NOW »
This book offers a self-contained introduction to the theory of electroweak interactions based on the semi-classical approach to relativistic quantum field theory, with thorough discussion of key aspects of the field. The basic tools for the calculation of cross sections and decay rates in the context of relativistic quantum field theory are reviewed in a short, but complete and rigorous, presentation. Special attention is focused on relativistic scattering theory and on calculation of amplitude in the semi-classical approximation. The central part of the book is devoted to an illustration of the unified field theory of electromagnetic and weak interactions as a quantum field theory with spontaneously broken gauge invariance; particular emphasis is placed on experimental confirmations of the theory. The closing chapters address the most recent developments in electroweak phenomenology and provide an introduction to the theory and phenomenology of neutrino oscillations. In this 2nd edition the discussion of relativistic scattering processes in the semi-classical approximation has been revised and as a result intermediate results are now explicitly proven. Furthermore, the recent discovery of the Higgs boson is now taken into account throughout the book. In particular, the Higgs decay channel into a pair of photons, which has played a crucial role in the discovery, is discussed. As in the first edition, the accent is still on the semi-classical approximation. However, in view of the necessity of a discussion of H !, the authors give several indications about corrections to the semiclassical approximation. Violation of unitarity is discussed in more detail, including the dispersion relations as a tool for computing loop corrections; the above-mentioned Higgs decay channel is illustrated by means of a full one-loop calculation; and finally, loop effects on the production of unstable particles (such as the Z0 boson) are now discussed. Finally, the neutrino mass and oscillation analysis is updated taking into account the major achievements of the last years.

Local Quantum Physics

Fields, Particles, Algebras

Author: Rudolf Haag

Publisher: Springer Science & Business Media

ISBN: 3642614582

Category: Science

Page: 392

View: 9003

DOWNLOAD NOW »
The new edition provided the opportunity of adding a new chapter entitled "Principles and Lessons of Quantum Physics". It was a tempting challenge to try to sharpen the points at issue in the long lasting debate on the Copenhagen Spirit, to assess the significance of various arguments from our present vantage point, seventy years after the advent of quantum theory, where, after ali, some problems appear in a different light. It includes a section on the assumptions leading to the specific mathematical formalism of quantum theory and a section entitled "The evolutionary picture" describing my personal conclusions. Alto gether the discussion suggests that the conventional language is too narrow and that neither the mathematical nor the conceptual structure are built for eter nity. Future theories will demand radical changes though not in the direction of a return to determinism. Essential lessons taught by Bohr will persist. This chapter is essentially self-contained. Some new material has been added in the last chapter. It concerns the char acterization of specific theories within the general frame and recent progress in quantum field theory on curved space-time manifolds. A few pages on renor malization have been added in Chapter II and some effort has been invested in the search for mistakes and unclear passages in the first edition. The central objective of the book, expressed in the title "Local Quantum Physics", is the synthesis between special relativity and quantum theory to gether with a few other principles of general nature.

Revolutions in Twentieth-Century Physics

Author: David J. Griffiths

Publisher: Cambridge University Press

ISBN: 1107602173

Category: Science

Page: 182

View: 8927

DOWNLOAD NOW »
"The conceptual changes brought by modern physics are important, radical and fascinating, yet they are only vaguely understood by people working outside the field. Exploring the four pillars of modern physics - relativity, quantum mechanics, elementary particles and cosmology - this clear and lively account will interest anyone who has wondered what Einstein, Bohr, Schrèodinger and Heisenberg were really talking about. The book discusses quarks and leptons, antiparticles and Feynman diagrams, curved space-time, the Big Bang and the expanding Universe. Suitable for undergraduate students in non-science as well as science subjects, it uses problems and worked examples to help readers develop an understanding of what recent advances in physics actually mean"--

Theory of Fundamental Processes

Author: Richard Feynman

Publisher: CRC Press

ISBN: 0429961057

Category: Technology & Engineering

Page: 188

View: 2276

DOWNLOAD NOW »
In these classic lectures, Richard Feynman first considers the basic ideas of quantum mechanics, treating the concept of amplitude in special detail and emphasizing that other things, such as the combination laws of angular momenta, are largely consequences of this concept. Feynman also discusses relativity and the idea of anti-particles, finally returning to a discussion of quantum electrodynamics, which takes up most of this volume.

A Brief Introduction to Classical, Statistical, and Quantum Mechanics

Author: Oliver Bühler

Publisher: American Mathematical Soc.

ISBN: 0821842323

Category: Mathematics

Page: 153

View: 3894

DOWNLOAD NOW »
This book provides a rapid overview of the basic methods and concepts in mechanics for beginning Ph.D. students and advanced undergraduates in applied mathematics or related fields. It is based on a graduate course given in 2006-07 at the Courant Institute of Mathematical Sciences. Among other topics, the book introduces Newton's law, action principles, Hamilton-Jacobi theory, geometric wave theory, analytical and numerical statistical mechanics, discrete and continuous quantum mechanics, and quantum path-integral methods. The focus is on fundamental mathematical methods that provide connections between seemingly unrelated subjects. An example is Hamilton-Jacobi theory, which appears in the calculus of variations, in Fermat's principle of classical mechanics, and in the geometric theory of dispersive wavetrains. The material is developed in a sequence of simple examples and the book can be used in a one-semester class on classical, statistical, and quantum mechanics. Some familiarity with differential equations is required but otherwise the book is self-contained. In particular, no previous knowledge of physics is assumed. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Symmetry and the Standard Model

Mathematics and Particle Physics

Author: Matthew Robinson

Publisher: Springer Science & Business Media

ISBN: 1441982671

Category: Science

Page: 327

View: 2260

DOWNLOAD NOW »
While theoretical particle physics is an extraordinarily fascinating field, the incredibly fast pace at which it moves along, combined with the huge amount of background information necessary to perform cutting edge research, poses a formidable challenge for graduate students. This book represents the first in a series designed to assist students in the process of transitioning from coursework to research in particle physics. Rather than reading literally dozens of physics and mathematics texts, trying to assimilate the countless ideas, translate notations and perspectives, and see how it all fits together to get a holistic understanding, this series provides a detailed overview of the major mathematical and physical ideas in theoretical particle physics. Ultimately the ideas will be presented in a unified, consistent, holistic picture, where each topic is built firmly on what has come before, and all topics are related in a clear and intuitive way. This introductory text on quantum field theory and particle physics provides both a self-contained and complete introduction to not only the necessary physical ideas, but also a complete introduction to the necessary mathematical tools. Assuming minimal knowledge of undergraduate physics and mathematics, this book lays both the mathematical and physical groundwork with clear, intuitive explanations and plenty of examples. The book then continues with an exposition of the Standard Model of Particle Physics, the theory that currently seems to explain the universe apart from gravity. Furthermore, this book was written as a primer for the more advanced mathematical and physical ideas to come later in this series.

Quantum Physics

An Introduction Based on Photons

Author: A.I Lvovsky

Publisher: Springer

ISBN: 3662565846

Category: Science

Page: 303

View: 5272

DOWNLOAD NOW »
This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided.

Quantum Theory: Concepts and Methods

Author: A. Peres

Publisher: Springer Science & Business Media

ISBN: 0306471205

Category: Science

Page: 450

View: 8367

DOWNLOAD NOW »
There are many excellent books on quantum theory from which one can learn to compute energy levels, transition rates, cross sections, etc. The theoretical rules given in these books are routinely used by physicists to compute observable quantities. Their predictions can then be compared with experimental data. There is no fundamental disagreement among physicists on how to use the theory for these practical purposes. However, there are profound differences in their opinions on the ontological meaning of quantum theory. The purpose of this book is to clarify the conceptual meaning of quantum theory, and to explain some of the mathematical methods which it utilizes. This text is not concerned with specialized topics such as atomic structure, or strong or weak interactions, but with the very foundations of the theory. This is not, however, a book on the philosophy of science. The approach is pragmatic and strictly instrumentalist. This attitude will undoubtedly antagonize some readers, but it has its own logic: quantum phenomena do not occur in a Hilbert space, they occur in a laboratory.

Statistical Physics and Thermodynamics

An Introduction to Key Concepts

Author: Jochen Rau

Publisher: Oxford University Press

ISBN: 0199595062

Category: Science

Page: 208

View: 8073

DOWNLOAD NOW »
Statistical physics and thermodynamics describe the behaviour of systems on the macroscopic scale. Their methods are applicable to a wide range of phenomena: from heat engines to chemical reactions, from the interior of stars to the melting of ice. Indeed, the laws of thermodynamics are among the most universal ones of all laws of physics. Yet this subject can prove difficult to grasp. Many view thermodynamics as merely a collection of ad hoc recipes, or are confused by unfamiliar novel concepts, such as the entropy, which have little in common with the deterministic theories to which students have got accustomed in other areas of physics. This text provides a concise yet thorough introduction to the key concepts which underlie statistical physics and thermodynamics. It begins with a review of classical probability theory and quantum theory, as well as a careful discussion of the notions of information and entropy, prior to embarking on the development of statistical physics proper. The crucial steps leading from the microscopic to the macroscopic domain are rendered transparent. In particular, the laws of thermodynamics are shown to emerge as natural consequences of the statistical framework. While the emphasis is on clarifying the basic concepts, the text also contains a wealth of applications and classroom-tested exercises, covering all major topics of a standard course on statistical physics and thermodynamics.

Choice

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Academic libraries

Page: N.A

View: 8136

DOWNLOAD NOW »

Introduction to the structure of matter

a course in modern physics

Author: John J. Brehm,William J. Mullin

Publisher: John Wiley & Sons Inc

ISBN: N.A

Category: Science

Page: 941

View: 7791

DOWNLOAD NOW »
A first course in two of the 20th century's most exciting contributions to physics: special relativity and quantum theory. Historical material is incorporated into the exposition. Coverage is broad and deep, offering the instructor flexibility in presentation. Nearly every section contains at least one illustrative example (with all calculations), and each chapter has a wide selection of problems. Topics covered include relativistic dynamics, quantum mechanics, parity, quantum statistical physics, the nuclear shell model, fission, fusion, color and the strong interaction, gauge symmetries, and grand unification.