Author: Pavel I. Etingof,Oleg Golberg,Sebastian Hensel ,Tiankai Liu ,Alex Schwendner ,Dmitry Vaintrob ,Elena Yudovina

Publisher: American Mathematical Soc.

ISBN: 0821853511

Category: Mathematics

Page: 228

View: 6063

Author: Pavel I. Etingof,Oleg Golberg,Sebastian Hensel ,Tiankai Liu ,Alex Schwendner ,Dmitry Vaintrob ,Elena Yudovina

Publisher: American Mathematical Soc.

ISBN: 0821853511

Category: Mathematics

Page: 228

View: 6063

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Author: Yitzhak Katznelson,Yonatan R. Katznelson

Publisher: American Mathematical Soc.

ISBN: 0821844199

Category: Mathematics

Page: 215

View: 1758

Linear algebra is the study of vector spaces and the linear maps between them. It underlies much of modern mathematics and is widely used in applications. A (Terse) Introduction to Linear Algebra is a concise presentation of the core material of the subject--those elements of linear algebra that every mathematician, and everyone who uses mathematics, should know. It goes from the notion of a finite-dimensional vector space to the canonical forms of linear operators and their matrices, and covers along the way such key topics as: systems of linear equations, linear operators and matrices, determinants, duality, and the spectral theory of operators on inner-product spaces. The last chapter offers a selection of additional topics indicating directions in which the core material can be applied. The Appendix provides all the relevant background material. Written for students with some mathematical maturity and an interest in abstraction and formal reasoning, the book is self-contained and is appropriate for an advanced undergraduate course in linear algebra.

Author: Emmanuel Kowalski

Publisher: American Mathematical Society

ISBN: 1470409666

Category: Mathematics

Page: 432

View: 5626

Representation theory is an important part of modern mathematics, not only as a subject in its own right but also as a tool for many applications. It provides a means for exploiting symmetry, making it particularly useful in number theory, algebraic geometry, and differential geometry, as well as classical and modern physics. The goal of this book is to present, in a motivated manner, the basic formalism of representation theory as well as some important applications. The style is intended to allow the reader to gain access to the insights and ideas of representation theory--not only to verify that a certain result is true, but also to explain why it is important and why the proof is natural. The presentation emphasizes the fact that the ideas of representation theory appear, sometimes in slightly different ways, in many contexts. Thus the book discusses in some detail the fundamental notions of representation theory for arbitrary groups. It then considers the special case of complex representations of finite groups and discusses the representations of compact groups, in both cases with some important applications. There is a short introduction to algebraic groups as well as an introduction to unitary representations of some noncompact groups. The text includes many exercises and examples.

Author: Klaus Hulek

Publisher: American Mathematical Soc.

ISBN: 0821829521

Category: Mathematics

Page: 213

View: 5730

This book is a true introduction to the basic concepts and techniques of algebraic geometry. The language is purposefully kept on an elementary level, avoiding sheaf theory and cohomology theory. The introduction of new algebraic concepts is always motivated by a discussion of the corresponding geometric ideas. The main point of the book is to illustrate the interplay between abstract theory and specific examples. The book contains numerous problems that illustrate the general theory. The text is suitable for advanced undergraduates and beginning graduate students. It contains sufficient material for a one-semester course. The reader should be familiar with the basic concepts of modern algebra. A course in one complex variable would be helpful, but is not necessary.

Author: Roger Knobel

Publisher: American Mathematical Soc.

ISBN: 0821820397

Category: Mathematics

Page: 196

View: 3544

Linear and nonlinear waves are a central part of the theory of PDEs. This book begins with a description of one-dimensional waves and their visualization through computer-aided techniques. Next, traveling waves are covered, such as solitary waves for the Klein-Gordon and KdV equations. Finally, the author gives a lucid discussion of waves arising from conservation laws, including shock and rarefaction waves. As an application, interesting models of traffic flow are used to illustrate conservation laws and wave phenomena. This book is based on a course given by the author at the IAS/Park City Mathematics Institute. It is suitable for independent study by undergraduate students in mathematics, engineering, and science programs.

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

ISBN: 0821853686

Category: Mathematics

Page: 314

View: 7196

This book presents a number of topics related to surfaces, such as Euclidean, spherical and hyperbolic geometry, the fundamental group, universal covering surfaces, Riemannian manifolds, the Gauss-Bonnet Theorem, and the Riemann mapping theorem. The main idea is to get to some interesting mathematics without too much formality. The book also includes some material only tangentially related to surfaces, such as the Cauchy Rigidity Theorem, the Dehn Dissection Theorem, and the Banach-Tarski Theorem.

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigourous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis.

Author: Deguang Han

Publisher: American Mathematical Soc.

ISBN: 0821842129

Category: Mathematics

Page: 295

View: 9250

Frames for Undergraduates is an undergraduate-level introduction to the theory of frames in a Hilbert space. This book can serve as a text for a special-topics course in frame theory, but it could also be used to teach a second semester of linear algebra, using frames as an application of the theoretical concepts. It can also provide a complete and helpful resource for students doing undergraduate research projects using frames. The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has motivated and influenced their students.

Author: Gregory F. Lawler

Publisher: American Mathematical Soc.

ISBN: 0821848291

Category: Mathematics

Page: 156

View: 3101

The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

*An Introductory Approach*

Author: Benjamin Steinberg

Publisher: Springer Science & Business Media

ISBN: 9781461407768

Category: Mathematics

Page: 157

View: 5425

This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.

Author: J.E. Humphreys

Publisher: Springer Science & Business Media

ISBN: 1461263980

Category: Mathematics

Page: 173

View: 1538

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Author: K. Erdmann,Mark J. Wildon

Publisher: Springer Science & Business Media

ISBN: 1846284902

Category: Mathematics

Page: 251

View: 5608

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

*An Introduction to Lie Group Theory*

Author: Andrew Baker

Publisher: Springer Science & Business Media

ISBN: 9781852334703

Category: Mathematics

Page: 330

View: 8003

This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.

*Modular Representations as an Introduction to the Local Representation Theory of Finite Groups*

Author: J. L. Alperin

Publisher: Cambridge University Press

ISBN: 9780521449267

Category: Mathematics

Page: 178

View: 3088

The aim of this text is to present some of the key results in the representation theory of finite groups. In order to keep the account reasonably elementary, so that it can be used for graduate-level courses, Professor Alperin has concentrated on local representation theory, emphasising module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. As a text, this book contains ample material for a one semester course. Exercises are provided at the end of most sections; the results of some are used later in the text. Representation theory is applied in number theory, combinatorics and in many areas of algebra. This book will serve as an excellent introduction to those interested in the subject itself or its applications.

*A Combinatorial Viewpoint*

Author: Amritanshu Prasad

Publisher: Cambridge University Press

ISBN: 1316222705

Category: Mathematics

Page: 191

View: 5997

This book discusses the representation theory of symmetric groups, the theory of symmetric functions and the polynomial representation theory of general linear groups. The first chapter provides a detailed account of necessary representation-theoretic background. An important highlight of this book is an innovative treatment of the Robinson–Schensted–Knuth correspondence and its dual by extending Viennot's geometric ideas. Another unique feature is an exposition of the relationship between these correspondences, the representation theory of symmetric groups and alternating groups and the theory of symmetric functions. Schur algebras are introduced very naturally as algebras of distributions on general linear groups. The treatment of Schur–Weyl duality reveals the directness and simplicity of Schur's original treatment of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.

Author: Aleksandr Aleksandrovich Kirillov

Publisher: American Mathematical Soc.

ISBN: 0821835300

Category: Mathematics

Page: 408

View: 7354

Isaac Newton encrypted his discoveries in analysis in the form of an anagram that deciphers to the sentence, 'It is worthwhile to solve differential equations'. Accordingly, one can express the main idea behind the orbit method by saying 'It is worthwhile to study coadjoint orbits'. The orbit method was introduced by the author, A. A. Kirillov, in the 1960s and remains a useful and powerful tool in areas such as Lie theory, group representations, integrable systems, complex and symplectic geometry, and mathematical physics. This book describes the essence of the orbit method for non-experts and gives the first systematic, detailed, and self-contained exposition of the method. It starts with a convenient 'User's Guide' and contains numerous examples. It can be used as a text for a graduate course, as well as a handbook for non-experts and a reference book for research mathematicians and mathematical physicists.

*Second Edition*

Author: Kristopher Tapp

Publisher: American Mathematical Soc.

ISBN: 1470427222

Category: Compact groups

Page: 239

View: 4007

Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.

Author: Martin Lorenz

Publisher: American Mathematical Soc.

ISBN: 1470436809

Category: Categories (Mathematics)

Page: 654

View: 8698

Representation theory investigates the different ways in which a given algebraic object--such as a group or a Lie algebra--can act on a vector space. Besides being a subject of great intrinsic beauty, the theory enjoys the additional benefit of having applications in myriad contexts outside pure mathematics, including quantum field theory and the study of molecules in chemistry. Adopting a panoramic viewpoint, this book offers an introduction to four different flavors of representation theory: representations of algebras, groups, Lie algebras, and Hopf algebras. A separate part of the book is devoted to each of these areas and they are all treated in sufficient depth to enable and hopefully entice the reader to pursue research in representation theory. The book is intended as a textbook for a course on representation theory, which could immediately follow the standard graduate abstract algebra course, and for subsequent more advanced reading courses. Therefore, more than 350 exercises at various levels of difficulty are included. The broad range of topics covered will also make the text a valuable reference for researchers in algebra and related areas and a source for graduate and postgraduate students wishing to learn more about representation theory by self-study.

*An Introduction Through Gln*

Author: Anthony Henderson

Publisher: Cambridge University Press

ISBN: 1107653614

Category: Mathematics

Page: 156

View: 5786

Written specifically to introduce advanced undergraduate and beginning graduate students to an important area of mathematics, this book is far more accessible than previous books on Lie algebras. The emphasis is on special cases and explicit calculation, with many examples and exercises with full solutions provided.

*Techniques of Representation Theory*

Author: Ibrahim Assem,Daniel Simson,Andrzej Skowronski

Publisher: Cambridge University Press

ISBN: 9780521584234

Category: Mathematics

Page: 472

View: 4731

Provides an elementary but up-to-date introduction to the representation theory of algebras.

Author: Emmanuel Kowalski

Publisher: American Mathematical Society

ISBN: 1470409666

Category: Mathematics

Page: 432

View: 4991

Representation theory is an important part of modern mathematics, not only as a subject in its own right but also as a tool for many applications. It provides a means for exploiting symmetry, making it particularly useful in number theory, algebraic geometry, and differential geometry, as well as classical and modern physics. The goal of this book is to present, in a motivated manner, the basic formalism of representation theory as well as some important applications. The style is intended to allow the reader to gain access to the insights and ideas of representation theory--not only to verify that a certain result is true, but also to explain why it is important and why the proof is natural. The presentation emphasizes the fact that the ideas of representation theory appear, sometimes in slightly different ways, in many contexts. Thus the book discusses in some detail the fundamental notions of representation theory for arbitrary groups. It then considers the special case of complex representations of finite groups and discusses the representations of compact groups, in both cases with some important applications. There is a short introduction to algebraic groups as well as an introduction to unitary representations of some noncompact groups. The text includes many exercises and examples.