Fractal Geometry

Mathematical Foundations and Applications

Author: Kenneth Falconer

Publisher: John Wiley & Sons

ISBN: 111876286X

Category: Mathematics

Page: 400

View: 9520

The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applications of fractals in a way that is accessible to students and researchers from a wide range of disciplines. Fractal Geometry: Mathematical Foundations and Applications is an excellent course book for undergraduate and graduate students studying fractal geometry, with suggestions for material appropriate for a first course indicated. The book also provides an invaluable foundation and reference for researchers who encounter fractals not only in mathematics but also in other areas across physics, engineering and the applied sciences. Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals Carefully explains each topic using illustrative examples and diagrams Includes the necessary mathematical background material, along with notes and references to enable the reader to pursue individual topics Features a wide range of exercises, enabling readers to consolidate their understanding Supported by a website with solutions to exercises and additional material Leads onto the more advanced sequel Techniques in Fractal Geometry (also by Kenneth Falconer and available from Wiley)

Measure, Topology, and Fractal Geometry

Author: Gerald Edgar

Publisher: Springer Science & Business Media

ISBN: 0387747494

Category: Mathematics

Page: 272

View: 5257

Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.

Techniques in Fractal Geometry

Author: Kenneth Falconer

Publisher: Wiley

ISBN: 9780471957249

Category: Mathematics

Page: 274

View: 3083

Following on from the success of Fractal Geometry: Mathematical Foundations and Applications, this new sequel presents a variety of techniques in current use for studying the mathematics of fractals. Much of the material presented in this book has come to the fore in recent years. This includes methods for studying dimensions and other parameters of fractal sets and measures, as well as more sophisticated techniques such as thermodynamic formalism and tangent measures. In addition to general theory, many examples and applications are described, in areas such as differential equations and harmonic analysis. This book is mathematically precise, but aims to give an intuitive feel for the subject, with underlying concepts described in a clear and accessible manner. The reader is assumed to be familiar with material from Fractal Geometry, but the main ideas and notation are reviewed in the first two chapters. Each chapter ends with brief notes on the development and current state of the subject. Exercises are included to reinforce the concepts. The author's clear style and up-to-date coverage of the subject make this book essential reading for all those who with to develop their understanding of fractal geometry.

Fractals, Chaos, Power Laws

Minutes from an Infinite Paradise

Author: Manfred Schroeder

Publisher: Courier Corporation

ISBN: 0486472043

Category: Science

Page: 448

View: 1561

This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. The author - hailed by Publishers Weekly as a modern Lewis Carroll - conveys memorable insights in the form of puns and puzzles. 1992 edition.

The Geometry of Fractal Sets

Author: K. J. Falconer

Publisher: Cambridge University Press

ISBN: 9780521337052

Category: Mathematics

Page: 162

View: 6964

This book contains a rigorous mathematical treatment of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Questions of local density and the existence of tangents of such sets are studied, as well as the dimensional properties of their projections in various directions. In the case of sets of integral dimension the dramatic differences between regular 'curve-like' sets and irregular 'dust like' sets are exhibited. The theory is related by duality to Kayeka sets (sets of zero area containing lines in every direction). The final chapter includes diverse examples of sets to which the general theory is applicable: discussions of curves of fractional dimension, self-similar sets, strange attractors, and examples from number theory, convexity and so on. There is an emphasis on the basic tools of the subject such as the Vitali covering lemma, net measures and Fourier transform methods.

The Fractal Geometry of Nature

Author: Benoit B. Mandelbrot

Publisher: Macmillan

ISBN: 9780716711865

Category: Juvenile Nonfiction

Page: 468

View: 5377

Three classic fractals, tamed. Galaxies and eddies. Scaling fractals. Nonscaling fractals. Self-mapping fractals. Randomness. Stratified random fractals. Fractional brown fractals. A book-within-the-book, in color. Random tremas; texture. Miscellany. Of men and ideas.

Fractals Everywhere

New Edition

Author: Michael F. Barnsley

Publisher: Courier Corporation

ISBN: 0486320340

Category: Mathematics

Page: 560

View: 5203

Up-to-date text focuses on how fractal geometry can be used to model real objects in the physical world, with an emphasis on fractal applications. Includes solutions, hints, and a bonus CD.

Chaos and Fractals

New Frontiers of Science

Author: Heinz-Otto Peitgen,Hartmut Jürgens,Dietmar Saupe

Publisher: Springer Science & Business Media

ISBN: 1475747403

Category: Mathematics

Page: 999

View: 8454

For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.

The Science of Fractal Images

Author: Heinz-Otto Peitgen,Dietmar Saupe

Publisher: Springer Science & Business Media

ISBN: 146123784X

Category: Mathematics

Page: 312

View: 8457

This book is based on notes for the course Fractals:lntroduction, Basics and Perspectives given by MichaelF. Barnsley, RobertL. Devaney, Heinz-Otto Peit gen, Dietmar Saupe and Richard F. Voss. The course was chaired by Heinz-Otto Peitgen and was part of the SIGGRAPH '87 (Anaheim, California) course pro gram. Though the five chapters of this book have emerged from those courses we have tried to make this book a coherent and uniformly styled presentation as much as possible. It is the first book which discusses fractals solely from the point of view of computer graphics. Though fundamental concepts and algo rithms are not introduced and discussed in mathematical rigor we have made a serious attempt to justify and motivate wherever it appeared to be desirable. Ba sic algorithms are typically presented in pseudo-code or a description so close to code that a reader who is familiar with elementary computer graphics should find no problem to get started. Mandelbrot's fractal geometry provides both a description and a mathemat ical model for many of the seemingly complex forms and patterns in nature and the sciences. Fractals have blossomed enormously in the past few years and have helped reconnect pure mathematics research with both natural sciences and computing. Computer graphics has played an essential role both in its de velopment and rapidly growing popularity. Conversely, fractal geometry now plays an important role in the rendering, modelling and animation of natural phenomena and fantastic shapes in computer graphics.

Further Developments in Fractals and Related Fields

Mathematical Foundations and Connections

Author: Julien Barral,Stéphane Seuret

Publisher: Springer Science & Business Media

ISBN: 081768400X

Category: Mathematics

Page: 288

View: 485

This volume, following in the tradition of a similar 2010 publication by the same editors, is an outgrowth of an international conference, “Fractals and Related Fields II,” held in June 2011. The book provides readers with an overview of developments in the mathematical fields related to fractals, including original research contributions as well as surveys from many of the leading experts on modern fractal theory and applications. The chapters cover fields related to fractals such as: *geometric measure theory *ergodic theory *dynamical systems *harmonic and functional analysis *number theory *probability theory Further Developments in Fractals and Related Fields is aimed at pure and applied mathematicians working in the above-mentioned areas as well as other researchers interested in discovering the fractal domain. Throughout the volume, readers will find interesting and motivating results as well as new avenues for further research.

A Tale of Two Fractals

Author: A.A. Kirillov

Publisher: Springer Science & Business Media

ISBN: 0817683828

Category: Mathematics

Page: 138

View: 4289

Since Benoit Mandelbrot's pioneering work in the late 1970s, scores of research articles and books have been published on the topic of fractals. Despite the volume of literature in the field, the general level of theoretical understanding has remained low; most work is aimed either at too mainstream an audience to achieve any depth or at too specialized a community to achieve widespread use. Written by celebrated mathematician and educator A.A. Kirillov, A Tale of Two Fractals is intended to help bridge this gap, providing an original treatment of fractals that is at once accessible to beginners and sufficiently rigorous for serious mathematicians. The work is designed to give young, non-specialist mathematicians a solid foundation in the theory of fractals, and, in the process, to equip them with exposure to a variety of geometric, analytical, and algebraic tools with applications across other areas.

Fractal Worlds

Grown, Built, and Imagined

Author: Michael Frame,Amelia Urry

Publisher: Yale University Press

ISBN: 030019787X

Category: Fractals

Page: 512

View: 5002

Fractal geometry is a uniquely fascinating area of mathematics, exhibited in a range of shapes that exist in the natural world, from a simple broccoli floret to a majestic mountain range. In this essential primer, mathematician Michael Frame--a close collaborator with Benoit Mandelbrot, the founder of fractal geometry--and poet Amelia Urry explore the amazing world of fractals as they appear in nature, art, medicine, and technology. Frame and Urry offer new insights into such familiar topics as measuring fractal complexity by dimension and the life and work of Mandelbrot. In addition, they delve into less-known areas: fractals with memory, the Mandelbrot set in four dimensions, fractals in literature, and more. An inviting introduction to an enthralling subject, this comprehensive volume is ideal for learning and teaching.

Mathematical Foundations of Image Processing and Analysis

Author: Jean-Charles Pinoli

Publisher: John Wiley & Sons

ISBN: 1118984552

Category: Technology & Engineering

Page: 496

View: 3670

Mathematical Imaging is currently a rapidly growing field in applied mathematics, with an increasing need for theoretical mathematics. This book, the second of two volumes, emphasizes the role of mathematics as a rigorous basis for imaging sciences. It provides a comprehensive and convenient overview of the key mathematical concepts, notions, tools and frameworks involved in the various fields of gray-tone and binary image processing and analysis, by proposing a large, but coherent, set of symbols and notations, a complete list of subjects and a detailed bibliography. It establishes a bridge between the pure and applied mathematical disciplines, and the processing and analysis of gray-tone and binary images. It is accessible to readers who have neither extensive mathematical training, nor peer knowledge in Image Processing and Analysis. It is a self-contained book focusing on the mathematical notions, concepts, operations, structures, and frameworks that are beyond or involved in Image Processing and Analysis. The notations are simplified as far as possible in order to be more explicative and consistent throughout the book and the mathematical aspects are systematically discussed in the image processing and analysis context, through practical examples or concrete illustrations. Conversely, the discussed applicative issues allow the role of mathematics to be highlighted. Written for a broad audience – students, mathematicians, image processing and analysis specialists, as well as other scientists and practitioners – the author hopes that readers will find their own way of using the book, thus providing a mathematical companion that can help mathematicians become more familiar with image processing and analysis, and likewise, image processing and image analysis scientists, researchers and engineers gain a deeper understanding of mathematical notions and concepts.

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics

Author: David Carfi,Michel Laurent Lapidus,Erin P. J. Pearse,Machiel Van Frankenhuysen

Publisher: American Mathematical Soc.

ISBN: 0821891472

Category: Mathematics

Page: 399

View: 6825

This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.

Ergodic Theory and Fractal Geometry

Author: Hillel Furstenberg

Publisher: American Mathematical Society

ISBN: 1470410346

Category: Mathematics

Page: 69

View: 5479

Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.

Chaos and Fractals

An Elementary Introduction

Author: David P. Feldman

Publisher: Oxford University Press

ISBN: 0199566437

Category: Mathematics

Page: 408

View: 4899

For students with a background in elementary algebra, this book provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia Sets and the Mandelbrot Set, power laws, and cellular automata. The book includes over 200 end-of-chapter exercises.

Fractal Functions, Fractal Surfaces, and Wavelets

Author: Peter R. Massopust

Publisher: Academic Press

ISBN: 0128044705

Category: Mathematics

Page: 426

View: 2151

Fractal Functions, Fractal Surfaces, and Wavelets, Second Edition, is the first systematic exposition of the theory of local iterated function systems, local fractal functions and fractal surfaces, and their connections to wavelets and wavelet sets. The book is based on Massopust’s work on and contributions to the theory of fractal interpolation, and the author uses a number of tools—including analysis, topology, algebra, and probability theory—to introduce readers to this exciting subject. Though much of the material presented in this book is relatively current (developed in the past decades by the author and his colleagues) and fairly specialized, an informative background is provided for those entering the field. With its coherent and comprehensive presentation of the theory of univariate and multivariate fractal interpolation, this book will appeal to mathematicians as well as to applied scientists in the fields of physics, engineering, biomathematics, and computer science. In this second edition, Massopust includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, further develops the connections to wavelets and wavelet sets, and deepens and extends the pedagogical content. Offers a comprehensive presentation of fractal functions and fractal surfaces Includes latest developments in fractal interpolation Connects fractal geometry with wavelet theory Includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, and further develops the connections to wavelets and wavelet sets Deepens and extends the pedagogical content


Endlessly Repeated Geometrical Figures

Author: Hendrik Adolf Lauwerier

Publisher: N.A

ISBN: 9780691024455

Category: Mathematics

Page: 209

View: 1267

Fractals are shapes in which an identical motif repeats itself on an ever diminishing scale. A coastline, for instance, is a fractal, with each bay or headland having its own smaller bays and headlands--as is a tree with a trunk that separates into two smaller side branches, which in their turn separate into side branches that are smaller still. No longer mathematical curiosities, fractals are now a vital subject of mathematical study, practical application, and popular interest. For readers interested in graphic design, computers, and science and mathematics in general, Hans Lauwerier provides an accessible introduction to fractals that makes only modest use of mathematical techniques. Lauwerier calls this volume a "book to work with." Readers with access to microcomputers can design new figures, as well as re-create famous examples. They can start with the final chapter, try out one of the programs described there (preferably in a compiled version such as TURBO BASIC), and consult the earlier chapters for whatever is needed to understand the fractals produced in this way. The first chapter, which builds on the relationship of binary number systems to the "tree fractal" described above, is the best place to start if one has no computer. There will be much to enjoy on the way, including the beautiful color illustrations.


The Patterns of Chaos

Author: John Briggs

Publisher: N.A

ISBN: 9781626543775


Page: 194

View: 2577

Fractals are unique patterns left behind by the unpredictable movement--the chaos--of the world at work. The branching patterns of trees, the veins in a hand, water twisting out of a running tap--all are fractals. Learn to recognize them and the world will never look the same again.Fractals permeate our lives, appearing in places as tiny as the surface of a virus cell and as majestic as the Grand Canyon. From ancient tribal peoples to modern painters to Star Wars animators, artists have been captivated by fractals and have used them in their work. Fans of computer science and math whizzes are wild about fractals as well, for the interesting programming and math problems they present.In Fractals: The Patterns of Chaos, science writer John Briggs uses over 170 illustrations to clearly explain the significance and beauty of fractals. He describes how fractals were discovered, how they are formed, and the unique properties different fractals share. Fractals is a breathtaking guided tour of a remarkable frontier in art, science, and nature. It will revolutionize the way you see the world and your place in it.