Elementary Probability for Applications

Author: Rick Durrett

Publisher: Cambridge University Press

ISBN: 1139480731

Category: Mathematics

Page: N.A

View: 4517

This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management.

Elementary Probability

Author: David Stirzaker

Publisher: Cambridge University Press

ISBN: 9781139441032

Category: Mathematics

Page: N.A

View: 886

Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.

Elementary Applications of Probability Theory

Author: Henry C. Tuckwell

Publisher: Routledge

ISBN: 1351452959

Category: Mathematics

Page: 308

View: 3927

This book provides a clear and straightforward introduction to applications of probability theory with examples given in the biological sciences and engineering. The first chapter contains a summary of basic probability theory. Chapters two to five deal with random variables and their applications. Topics covered include geometric probability, estimation of animal and plant populations, reliability theory and computer simulation. Chapter six contains a lucid account of the convergence of sequences of random variables, with emphasis on the central limit theorem and the weak law of numbers. The next four chapters introduce random processes, including random walks and Markov chains illustrated by examples in population genetics and population growth. This edition also includes two chapters which introduce, in a manifestly readable fashion, the topic of stochastic differential equations and their applications.

Basic Probability Theory with Applications

Author: Mario Lefebvre

Publisher: Springer Science & Business Media

ISBN: 0387749950

Category: Mathematics

Page: 340

View: 7055

The main intended audience for this book is undergraduate students in pure and applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability theory they generally need in their training. Although the treatment of the subject is surely su?cient for non-mathematicians, I intentionally avoided getting too much into detail. For instance, topics such as mixed type random variables and the Dirac delta function are only brie?y mentioned. Courses on probability theory are often considered di?cult. However, after having taught this subject for many years, I have come to the conclusion that one of the biggest problems that the students face when they try to learn probability theory, particularly nowadays, is their de?ciencies in basic di?erential and integral calculus. Integration by parts, for example, is often already forgotten by the students when they take a course on probability. For this reason, I have decided to write a chapter reviewing the basic elements of di?erential calculus. Even though this chapter might not be covered in class, the students can refer to it when needed. In this chapter, an e?ort was made to give the readers a good idea of the use in probability theory of the concepts they should already know. Chapter 2 presents the main results of what is known as elementary probability, including Bayes’ rule and elements of combinatorial analysis.

Fundamentals of Probability and Statistics for Engineers

Author: T. T. Soong

Publisher: John Wiley & Sons

ISBN: 0470868155

Category: Mathematics

Page: 406

View: 9503

This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.

Elementary Probability Theory with Stochastic Processes

Author: K. L. Chung

Publisher: Springer Science & Business Media

ISBN: 1475751141

Category: Mathematics

Page: 325

View: 9661

In the past half-century the theory of probability has grown from a minor isolated theme into a broad and intensive discipline interacting with many other branches of mathematics. At the same time it is playing a central role in the mathematization of various applied sciences such as statistics, opera tions research, biology, economics and psychology-to name a few to which the prefix "mathematical" has so far been firmly attached. The coming-of-age of probability has been reflected in the change of contents of textbooks on the subject. In the old days most of these books showed a visible split personality torn between the combinatorial games of chance and the so-called "theory of errors" centering in the normal distribution. This period ended with the appearance of Feller's classic treatise (see [Feller l]t) in 1950, from the manuscript of which I gave my first substantial course in probability. With the passage of time probability theory and its applications have won a place in the college curriculum as a mathematical discipline essential to many fields of study. The elements of the theory are now given at different levels, sometimes even before calculus. The present textbook is intended for a course at about the sophomore level. It presupposes no prior acquaintance with the subject and the first three chapters can be read largely without the benefit of calculus.

Elementary Probability with Applications, Second Edition

Author: Larry Rabinowitz

Publisher: CRC Press

ISBN: 1498771335

Category: Mathematics

Page: 218

View: 9697

Elementary Probability with Applications, Second Edition shows students how probability has practical uses in many different fields, such as business, politics, and sports. In the book, students learn about probability concepts from real-world examples rather than theory. The text explains how probability models with underlying assumptions are used to model actual situations. It contains examples of probability models as they relate to: Bloc voting Population genetics Doubling strategies in casinos Machine reliability Airline management Cryptology Blood testing Dogs resembling owners Drug detection Jury verdicts Coincidences Number of concert hall aisles 2000 U.S. presidential election Points after deuce in tennis Tests regarding intelligent dogs Music composition Based on the author’s course at The College of William and Mary, the text can be used in a one-semester or one-quarter course in discrete probability with a strong emphasis on applications. By studying the book, students will appreciate the subject of probability and its applications and develop their problem-solving and reasoning skills.

Elementary Probability with Applications

Author: Larry Rabinowitz

Publisher: CRC Press

ISBN: 1351991671

Category: Mathematics

Page: 208

View: 4416

Probability plays an essential role in making decisions in areas such as business, politics, and sports, among others. Professor Rabinowitz, based on many years of teaching, has created a textbook suited for classroom use as well as for self-study that is filled with hundreds of carefully chosen examples based on real-world case studies about sports, elections, drug testing, legal cases, population growth, business, and more. His approach is innovative, practical, and entertaining. Elementary Probability with Applications will serve to enhance classroom instruction, as well as benefit those who want to review the basics of probability at their own pace. The text is used at several colleges and for some high school classes.

An Elementary Introduction to the Theory of Probability

Author: Boris Vladimirovich Gnedenko,Aleksandr I?Akovlevich Khinchin

Publisher: Courier Corporation

ISBN: 9780486601557

Category: Mathematics

Page: 130

View: 1453

This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.

High-Dimensional Probability

An Introduction with Applications in Data Science

Author: Roman Vershynin

Publisher: Cambridge University Press

ISBN: 1108415199

Category: Business & Economics

Page: 296

View: 2631

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Introduction to Probability

Author: Charles Miller Grinstead,James Laurie Snell

Publisher: American Mathematical Soc.

ISBN: 0821894145

Category: Probabilities

Page: 510

View: 1167

This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. The text is also recommended for use in discrete probability courses. The material is organized so that the discrete and continuous probability discussions are presented in a separate, but parallel, manner. This organization does not emphasize an overly rigorous or formal view of probability and therefore offers some strong pedagogical value. Hence, the discrete discussions can sometimes serve to motivate the more abstract continuous probability discussions. Features: Key ideas are developed in a somewhat leisurely style, providing a variety of interesting applications to probability and showing some nonintuitive ideas. Over 600 exercises provide the opportunity for practicing skills and developing a sound understanding of ideas. Numerous historical comments deal with the development of discrete probability. The text includes many computer programs that illustrate the algorithms or the methods of computation for important problems. The book is a beautiful introduction to probability theory at the beginning level. The book contains a lot of examples and an easy development of theory without any sacrifice of rigor, keeping the abstraction to a minimal level. It is indeed a valuable addition to the study of probability theory. --Zentralblatt MATH

Stochastic Processes

Theory for Applications

Author: Robert G. Gallager

Publisher: Cambridge University Press

ISBN: 1107435315

Category: Technology & Engineering

Page: 568

View: 8218

This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.

Probability and Random Processes

With Applications to Signal Processing and Communications

Author: Scott L. Miller,Donald G. Childers

Publisher: Academic Press

ISBN: 0123869811

Category: Mathematics

Page: 611

View: 2761

Miller and Childers have focused on creating a clear presentation of foundational concepts with specific applications to signal processing and communications, clearly the two areas of most interest to students and instructors in this course. It is aimed at graduate students as well as practicing engineers, and includes unique chapters on narrowband random processes and simulation techniques. The appendices provide a refresher in such areas as linear algebra, set theory, random variables, and more. Probability and Random Processes also includes applications in digital communications, information theory, coding theory, image processing, speech analysis, synthesis and recognition, and other fields. * Exceptional exposition and numerous worked out problems make the book extremely readable and accessible * The authors connect the applications discussed in class to the textbook * The new edition contains more real world signal processing and communications applications * Includes an entire chapter devoted to simulation techniques

A Modern Approach to Probability Theory

Author: Bert E. Fristedt,Lawrence F. Gray

Publisher: Springer Science & Business Media

ISBN: 1489928375

Category: Mathematics

Page: 758

View: 4759

Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.

Probability Theory

The Logic of Science

Author: E. T. Jaynes

Publisher: Cambridge University Press

ISBN: 1139435167

Category: Science

Page: N.A

View: 7433

The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.

Introduction to Probability and Its Applications

Author: Richard Scheaffer,Linda Young

Publisher: Cengage Learning

ISBN: 0534386717

Category: Mathematics

Page: 480

View: 5809

This text focuses on the utility of probability in solving real-world problems for students in a one-semester calculus-based probability course. Theory is developed to a practical degree and grounded in discussion of its practical uses in solving real-world problems. Numerous applications using up-to-date real data in engineering and the life, social, and physical sciences illustrate and motivate the many ways probability affects our lives. The text’s accessible presentation carefully progresses from routine to more difficult problems to suit students of different backgrounds, and carefully explains how and where to apply methods. Students going on to more advanced courses in probability and statistics will gain a solid background in fundamental concepts and theory, while students who must apply probability to their courses engineering and the sciences will develop a working knowledge of the subject and appreciation of its practical power. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Linear Algebra and Probability for Computer Science Applications

Author: Ernest Davis

Publisher: CRC Press

ISBN: 1466501596

Category: Mathematics

Page: 431

View: 4854

Based on the author’s course at NYU, Linear Algebra and Probability for Computer Science Applications gives an introduction to two mathematical fields that are fundamental in many areas of computer science. The course and the text are addressed to students with a very weak mathematical background. Most of the chapters discuss relevant MATLAB® functions and features and give sample assignments in MATLAB; the author’s website provides the MATLAB code from the book. After an introductory chapter on MATLAB, the text is divided into two sections. The section on linear algebra gives an introduction to the theory of vectors, matrices, and linear transformations over the reals. It includes an extensive discussion on Gaussian elimination, geometric applications, and change of basis. It also introduces the issues of numerical stability and round-off error, the discrete Fourier transform, and singular value decomposition. The section on probability presents an introduction to the basic theory of probability and numerical random variables; later chapters discuss Markov models, Monte Carlo methods, information theory, and basic statistical techniques. The focus throughout is on topics and examples that are particularly relevant to computer science applications; for example, there is an extensive discussion on the use of hidden Markov models for tagging text and a discussion of the Zipf (inverse power law) distribution. Examples and Programming Assignments The examples and programming assignments focus on computer science applications. The applications covered are drawn from a range of computer science areas, including computer graphics, computer vision, robotics, natural language processing, web search, machine learning, statistical analysis, game playing, graph theory, scientific computing, decision theory, coding, cryptography, network analysis, data compression, and signal processing. Homework Problems Comprehensive problem sections include traditional calculation exercises, thought problems such as proofs, and programming assignments that involve creating MATLAB functions.

Theoretical probability for applications

Author: Sidney C. Port

Publisher: Wiley-Interscience

ISBN: 9780471632160

Category: Mathematics

Page: 894

View: 5534

Offering comprehensive coverage of modern probability theory (exclusive of continuous time stochastic processes), this unique book functions as both an introduction for graduate statisticians, mathematicians, engineers, and economists and an encyclopedic reference of the subject for professionals in these fields. It assumes only a knowledge of calculus as well as basic real analysis and linear algebra. Throughout Theoretical Probability for Applications the focus is on the practical uses of this increasingly important tool. It develops topics of discrete time probability theory for use in a multitude of applications, including stochastic processes, theoretical statistics, and other disciplines that require a sound foundation in modern probability theory. Principles of measure theory related to the study of probability theory are developed as they are required throughout the book. The book examines most of the basic probability models that involve only a finite or countably infinite number of random variables. Topics in the "Discrete Models" section include Bernoulli trials, random walks, matching, sums of indicators, multinomial trials. Poisson approximations and processes, sampling. Markov chains, and discrete renewal theory. Nondiscrete models discussed include univariate, Beta, sampling, and Dirichlet distributions as well as order statistics. A separate chapter covers aspects of the multivariate normal model. Every treatment is carried out for both random vectors and random variables. Consequently, the book contains complete proofs of the vector case which often differ in detail from those of the scalar case. Complete with end-of-chapter exercises that provide both a drill of thematerial presented and an expansion of that same material, explanations of notations used, and a detailed bibliography. Theoretical Probability for Applications is a practical, easy-to-use reference which accommodates the diverse needs of statisticians, mathematicians, economists, engineers, instructors, and students alike.