Computational Finance

An Introductory Course with R

Author: Argimiro Arratia

Publisher: Springer Science & Business Media

ISBN: 9462390703

Category: Computers

Page: 301

View: 3471

DOWNLOAD NOW »
The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to compute are also described.

Computational Finance

Numerical Methods for Pricing Financial Instruments

Author: George Levy

Publisher: Butterworth-Heinemann

ISBN: 9780750657228

Category: Business & Economics

Page: 443

View: 2194

DOWNLOAD NOW »
Accompanying CD-ROM contains ... "working computer code, demonstration applications, and also PDF versions of several research articles that are referred to in the book." -- d.j.

Tools for Computational Finance

Author: Rüdiger U. Seydel

Publisher: Springer

ISBN: 1447173384

Category: Mathematics

Page: 486

View: 2808

DOWNLOAD NOW »
Computational and numerical methods are used in a number of ways across the field of finance. It is the aim of this book to explain how such methods work in financial engineering. By concentrating on the field of option pricing, a core task of financial engineering and risk analysis, this book explores a wide range of computational tools in a coherent and focused manner and will be of use to anyone working in computational finance. Starting with an introductory chapter that presents the financial and stochastic background, the book goes on to detail computational methods using both stochastic and deterministic approaches. Now in its sixth edition, Tools for Computational Finance has been significantly revised and contains: Several new parts such as a section on extended applications of tree methods, including multidimensional trees, trinomial trees, and the handling of dividends; Additional material in the field of generating normal variates with acceptance-rejection methods, and on Monte Carlo methods; 115 exercises, and more than 100 figures, many in color. Written from the perspective of an applied mathematician, all methods are introduced for immediate and straightforward application. A ‘learning by calculating’ approach is adopted throughout this book, enabling readers to explore several areas of the financial world. Interdisciplinary in nature, this book will appeal to advanced undergraduate and graduate students in mathematics, engineering, and other scientific disciplines as well as professionals in financial engineering.

Computational Finance 1999

Author: Yaser S. Abu-Mostafa

Publisher: MIT Press

ISBN: 9780262511070

Category: Business & Economics

Page: 713

View: 725

DOWNLOAD NOW »
Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.

A Workout in Computational Finance

Author: Andreas Binder,Michael Aichinger

Publisher: John Wiley & Sons

ISBN: 111997349X

Category: Business & Economics

Page: 336

View: 2967

DOWNLOAD NOW »
A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability to assess their quality, advantages, and limitations. This book offers a thorough introduction to each method, revealing the numerical traps that practitioners frequently fall into. Each method is referenced with practical, real-world examples in the areas of valuation, risk analysis, and calibration of specific financial instruments and models. It features a strong emphasis on robust schemes for the numerical treatment of problems within computational finance. Methods covered include PDE/PIDE using finite differences or finite elements, fast and stable solvers for sparse grid systems, stabilization and regularization techniques for inverse problems resulting from the calibration of financial models to market data, Monte Carlo and Quasi Monte Carlo techniques for simulating high dimensional systems, and local and global optimization tools to solve the minimization problem.

Handbook of Computational Finance

Author: Jin-Chuan Duan,Wolfgang Karl Härdle,James E. Gentle

Publisher: Springer Science & Business Media

ISBN: 9783642172540

Category: Business & Economics

Page: 804

View: 9813

DOWNLOAD NOW »
Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a “fair” value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.

An Introduction to Computational Finance

Author: ™mr U?ur

Publisher: Imperial College Press

ISBN: 1848161921

Category: Mathematics

Page: 298

View: 1993

DOWNLOAD NOW »
Although there are several publications on similar subjects, this book mainly focuses on pricing of options and bridges the gap between Mathematical Finance and Numerical Methodologies. The author collects the key contributions of several monographs and selected literature, values and displays their importance, and composes them here to create a work which has its own characteristics in content and style.This invaluable book provides working Matlab codes not only to implement the algorithms presented in the text, but also to help readers code their own pricing algorithms in their preferred programming languages. Availability of the codes under an Internet site is also offered by the author.Not only does this book serve as a textbook in related undergraduate or graduate courses, but it can also be used by those who wish to implement or learn pricing algorithms by themselves. The basic methods of option pricing are presented in a self-contained and unified manner, and will hopefully help readers improve their mathematical and computational backgrounds for more advanced topics.Errata(s)Errata

Computational Finance

A Scientific Perspective

Author: Cornelis A. Los

Publisher: World Scientific

ISBN: 9789810244972

Category: Computers

Page: 336

View: 1396

DOWNLOAD NOW »
Computational finance deals with the mathematics of computer programs that realize financial models or systems. This book outlines the epistemic risks associated with the current valuations of different financial instruments and discusses the corresponding risk management strategies. It covers most of the research and practical areas in computational finance. Starting from traditional fundamental analysis and using algebraic and geometric tools, it is guided by the logic of science to explore information from financial data without prejudice. In fact, this book has the unique feature that it is structured around the simple requirement of objective science: the geometric structure of the data = the information contained in the data.

Computational Finance Using C and C#

Derivatives and Valuation

Author: George Levy

Publisher: Academic Press

ISBN: 0128035765

Category: Business & Economics

Page: 388

View: 5545

DOWNLOAD NOW »
Computational Finance Using C and C#: Derivatives and Valuation, Second Edition provides derivatives pricing information for equity derivatives, interest rate derivatives, foreign exchange derivatives, and credit derivatives. By providing free access to code from a variety of computer languages, such as Visual Basic/Excel, C++, C, and C#, it gives readers stand-alone examples that they can explore before delving into creating their own applications. It is written for readers with backgrounds in basic calculus, linear algebra, and probability. Strong on mathematical theory, this second edition helps empower readers to solve their own problems. *Features new programming problems, examples, and exercises for each chapter. *Includes freely-accessible source code in languages such as C, C++, VBA, C#, and Excel.. *Includes a new chapter on the history of finance which also covers the 2008 credit crisis and the use of mortgage backed securities, CDSs and CDOs. *Emphasizes mathematical theory. Features new programming problems, examples, and exercises with solutions added to each chapter Includes freely-accessible source code in languages such as C, C++, VBA, C#, Excel, Includes a new chapter on the credit crisis of 2008 Emphasizes mathematical theory

Novel Methods in Computational Finance

Author: Matthias Ehrhardt,Michael Günther,E. Jan W. ter Maten

Publisher: Springer

ISBN: 3319612824

Category: Mathematics

Page: 606

View: 2038

DOWNLOAD NOW »
This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.

Numerical Partial Differential Equations in Finance Explained

An Introduction to Computational Finance

Author: Karel in 't Hout

Publisher: Springer

ISBN: 1137435690

Category: Business & Economics

Page: 128

View: 9938

DOWNLOAD NOW »
This book provides a first, basic introduction into the valuation of financial options via the numerical solution of partial differential equations (PDEs). It provides readers with an easily accessible text explaining main concepts, models, methods and results that arise in this approach. In keeping with the series style, emphasis is placed on intuition as opposed to full rigor, and a relatively basic understanding of mathematics is sufficient. The book provides a wealth of examples, and ample numerical experiments are givento illustrate the theory. The main focus is on one-dimensional financial PDEs, notably the Black-Scholes equation. The book concludes with a detailed discussion of the important step towards two-dimensional PDEs in finance.

Simulation in Computational Finance and Economics: Tools and Emerging Applications

Tools and Emerging Applications

Author: Alexandrova-Kabadjova, Biliana

Publisher: IGI Global

ISBN: 1466620129

Category: Business & Economics

Page: 378

View: 5714

DOWNLOAD NOW »
Simulation has become a tool difficult to substitute in many scientific areas like manufacturing, medicine, telecommunications, games, etc. Finance is one of such areas where simulation is a commonly used tool; for example, we can find Monte Carlo simulation in many financial applications like market risk analysis, portfolio optimization, credit risk related applications, etc. Simulation in Computational Finance and Economics: Tools and Emerging Applications presents a thorough collection of works, covering several rich and highly productive areas of research including Risk Management, Agent-Based Simulation, and Payment Methods and Systems, topics that have found new motivations after the strong recession experienced in the last few years. Despite the fact that simulation is widely accepted as a prominent tool, dealing with a simulation-based project requires specific management abilities of the researchers. Economic researchers will find an excellent reference to introduce them to the computational simulation models. The works presented in this book can be used as an inspiration for economic researchers interested in creating their own computational models in their respective fields.

Computational Finance and Its Applications III

Author: M. Costantino,C. A. Brebbia,M. Larran

Publisher: WIT Press

ISBN: 1845641116

Category: Business & Economics

Page: 227

View: 9908

DOWNLOAD NOW »
Featuring papers from the Third International Conference on Computational Finance and its Applications, the text includes papers that encompass a wide range of topics such as modern financial services technologies, derivatives pricing, portfolio management and asset allocation, and intelligent trading agents.

Decision Technologies for Computational Finance

Proceedings of the fifth International Conference Computational Finance

Author: Apostolos-Paul N. Refenes,Andrew N. Burgess,John E. Moody

Publisher: Springer Science & Business Media

ISBN: 1461556252

Category: Business & Economics

Page: 479

View: 2157

DOWNLOAD NOW »
This volume contains selected papers that were presented at the International Conference COMPUTATIONAL FINANCE 1997 held at London Business School on December 15-17 1997. Formerly known as Neural Networks in the Capital Markets (NNCM), this series of meetings has emerged as a truly multi-disciplinary international conference and provided an international focus for innovative research on the application of a multiplicity of advanced decision technologies to many areas of financial engineering. It has drawn upon theoretical advances in financial economics and robust methodological developments in the statistical, econometric and computer sciences. To reflect its multi-disciplinary nature, the NNCM conference has adopted the new title COMPUTATIONAL FINANCE. The papers in this volume are organised in six parts. Market Dynamics and Risk, Trading and Arbitrage strategies, Volatility and Options, Term-Structure and Factor models, Corporate Distress Models and Advances on Methodology. This years' acceptance rate (38%) reflects both the increasing interest in the conference and the Programme Committee's efforts to improve the quality of the meeting year-on-year. I would like to thank the members of the programme committee for their efforts in refereeing the papers. I also would like to thank the members of the computational finance group at London Business School and particularly Neil Burgess, Peter Bolland, Yves Bentz, and Nevil Towers for organising the meeting.

Natural Computing in Computational Finance

Author: Anthony Brabazon,Michael O'Neill

Publisher: Springer Science & Business Media

ISBN: 3540774769

Category: Mathematics

Page: 303

View: 4050

DOWNLOAD NOW »
Natural Computing in Computational Finance is a innovative volume containing fifteen chapters which illustrate cutting-edge applications of natural computing or agent-based modeling in modern computational finance. Following an introductory chapter the book is organized into three sections. The first section deals with optimization applications of natural computing demonstrating the application of a broad range of algorithms including, genetic algorithms, differential evolution, evolution strategies, quantum-inspired evolutionary algorithms and bacterial foraging algorithms to multiple financial applications including portfolio optimization, fund allocation and asset pricing. The second section explores the use of natural computing methodologies such as genetic programming, neural network hybrids and fuzzy-evolutionary hybrids for model induction in order to construct market trading, credit scoring and market prediction systems. The final section illustrates a range of agent-based applications including the modeling of payment card and financial markets. Each chapter provides an introduction to the relevant natural computing methodology as well as providing a clear description of the financial application addressed. The book was written to be accessible to a wide audience and should be of interest to practitioners, academics and students, in the fields of both natural computing and finance.

Genetic Algorithms and Genetic Programming in Computational Finance

Author: Shu-Heng Chen

Publisher: Springer Science & Business Media

ISBN: 9780792376019

Category: Business & Economics

Page: 489

View: 8024

DOWNLOAD NOW »
After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.

Genetic Algorithms and Genetic Programming in Computational Finance

Author: Shu-Heng Chen

Publisher: Springer Science & Business Media

ISBN: 1461508355

Category: Business & Economics

Page: 489

View: 7630

DOWNLOAD NOW »
After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.

Computational Financial Mathematics using MATHEMATICA®

Optimal Trading in Stocks and Options

Author: Srdjan Stojanovic

Publisher: Springer Science & Business Media

ISBN: 1461200431

Category: Business & Economics

Page: 481

View: 2404

DOWNLOAD NOW »
Given the explosion of interest in mathematical methods for solving problems in finance and trading, a great deal of research and development is taking place in universities, large brokerage firms, and in the supporting trading software industry. Mathematical advances have been made both analytically and numerically in finding practical solutions. This book provides a comprehensive overview of existing and original material, about what mathematics when allied with Mathematica can do for finance. Sophisticated theories are presented systematically in a user-friendly style, and a powerful combination of mathematical rigor and Mathematica programming. Three kinds of solution methods are emphasized: symbolic, numerical, and Monte-- Carlo. Nowadays, only good personal computers are required to handle the symbolic and numerical methods that are developed in this book. Key features: * No previous knowledge of Mathematica programming is required * The symbolic, numeric, data management and graphic capabilities of Mathematica are fully utilized * Monte--Carlo solutions of scalar and multivariable SDEs are developed and utilized heavily in discussing trading issues such as Black--Scholes hedging * Black--Scholes and Dupire PDEs are solved symbolically and numerically * Fast numerical solutions to free boundary problems with details of their Mathematica realizations are provided * Comprehensive study of optimal portfolio diversification, including an original theory of optimal portfolio hedging under non-Log-Normal asset price dynamics is presented The book is designed for the academic community of instructors and students, and most importantly, will meet the everyday trading needs of quantitatively inclined professional and individual investors.

Natural Computing in Computational Finance

Author: Anthony Brabazon,Michael O'Neill,Dietmar Maringer

Publisher: Springer Science & Business Media

ISBN: 364223335X

Category: Computers

Page: 202

View: 969

DOWNLOAD NOW »
This book follows on from Natural Computing in Computational Finance Volumes I, II and III. As in the previous volumes of this series, the book consists of a series of chapters each of which was selected following a rigorous, peer-reviewed, selection process. The chapters illustrate the application of a range of cutting-edge natural computing and agent-based methodologies in computational finance and economics. The applications explored include option model calibration, financial trend reversal detection, enhanced indexation, algorithmic trading, corporate payout determination and agent-based modeling of liquidity costs, and trade strategy adaptation. While describing cutting edge applications, the chapters are written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics. which was selected following a rigorous, peer-reviewed, selection process. The chapters illustrate the application of a range of cutting-edge natural computing and agent-based methodologies in computational finance and economics. The applications explored include option model calibration, financial trend reversal detection, enhanced indexation, algorithmic trading, corporate payout determination and agent-based modeling of liquidity costs, and trade strategy adaptation. While describing cutting edge applications, the chapters are written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics. The applications explored include option model calibration, financial trend reversal detection, enhanced indexation, algorithmic trading, corporate payout determination and agent-based modeling of liquidity costs, and trade strategy adaptation. While describing cutting edge applications, the chapters are written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics. written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics.

Deterministic and Stochastic Topics in Computational Finance

Author: Ovidiu Calin

Publisher: World Scientific Publishing Company

ISBN: 9813203102

Category:

Page: 484

View: 349

DOWNLOAD NOW »
What distinguishes this book from other texts on mathematical finance is the use of both probabilistic and PDEs tools to price derivatives for both constant and stochastic volatility models, by which the reader has the advantage of computing explicitly a large number of prices for European, American and Asian derivatives. The book presents continuous time models for financial markets, starting from classical models such as Black–Scholes and evolving towards the most popular models today such as Heston and VAR. A key feature of the textbook is the large number of exercises, mostly solved, which are designed to help the reader to understand the material. The book is based on the author's lectures on topics on computational finance for senior and graduate students, delivered in USA (Princeton University and EMU), Taiwan and Kuwait. The prerequisites are an introductory course in stochastic calculus, as well as the usual calculus sequence. The book is addressed to undergraduate and graduate students in Masters of Finance programs as well as to those who wish to become more efficient in their practical applications. Topics covered: Interest Rates and BondsForward Rates and Yield CurvesRisk-neutral ValuationMartingale MeasuresBlack–Scholes AnalysisAmerican OptionsStochastic Volatility Models (Heston, AR, GARCH)Stochastic Return Models (VAR) Request Inspection Copy