*With Examples in R*

Author: Marco Scutari,Jean-Baptiste Denis

Publisher: CRC Press

ISBN: 148222559X

Category: Computers

Page: 241

View: 6400

*With Examples in R*

Author: Marco Scutari,Jean-Baptiste Denis

Publisher: CRC Press

ISBN: 148222559X

Category: Computers

Page: 241

View: 6400

Understand the Foundations of Bayesian Networks—Core Properties and Definitions Explained Bayesian Networks: With Examples in R introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples in R illustrate each step of the modeling process. The examples start from the simplest notions and gradually increase in complexity. The authors also distinguish the probabilistic models from their estimation with data sets. The first three chapters explain the whole process of Bayesian network modeling, from structure learning to parameter learning to inference. These chapters cover discrete Bayesian, Gaussian Bayesian, and hybrid networks, including arbitrary random variables. The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R and other software packages appropriate for Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein signaling network paper and graphical modeling approaches for predicting the composition of different body parts. Suitable for graduate students and non-statisticians, this text provides an introductory overview of Bayesian networks. It gives readers a clear, practical understanding of the general approach and steps involved.

*A Bayesian Course with Examples in R and Stan*

Author: Richard McElreath

Publisher: CRC Press

ISBN: 1315362619

Category: Mathematics

Page: 487

View: 369

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

*with Applications in Systems Biology*

Author: Radhakrishnan Nagarajan,Marco Scutari,Sophie Lèbre

Publisher: Springer Science & Business Media

ISBN: 1461464463

Category: Computers

Page: 157

View: 3751

Bayesian Networks in R with Applications in Systems Biology is unique as it introduces the reader to the essential concepts in Bayesian network modeling and inference in conjunction with examples in the open-source statistical environment R. The level of sophistication is also gradually increased across the chapters with exercises and solutions for enhanced understanding for hands-on experimentation of the theory and concepts. The application focuses on systems biology with emphasis on modeling pathways and signaling mechanisms from high-throughput molecular data. Bayesian networks have proven to be especially useful abstractions in this regard. Their usefulness is especially exemplified by their ability to discover new associations in addition to validating known ones across the molecules of interest. It is also expected that the prevalence of publicly available high-throughput biological data sets may encourage the audience to explore investigating novel paradigms using the approaches presented in the book.

Author: Søren Højsgaard,David Edwards,Steffen Lauritzen

Publisher: Springer Science & Business Media

ISBN: 146142299X

Category: Mathematics

Page: 182

View: 371

Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many of these software developments have taken place within the R community, either in the form of new packages or by providing an R interface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data.

Author: Kevin B. Korb,Ann E. Nicholson

Publisher: CRC Press

ISBN: 1439815925

Category: Business & Economics

Page: 491

View: 9997

Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology. New to the Second Edition New chapter on Bayesian network classifiers New section on object-oriented Bayesian networks New section that addresses foundational problems with causal discovery and Markov blanket discovery New section that covers methods of evaluating causal discovery programs Discussions of many common modeling errors New applications and case studies More coverage on the uses of causal interventions to understand and reason with causal Bayesian networks Illustrated with real case studies, the second edition of this bestseller continues to cover the groundwork of Bayesian networks. It presents the elements of Bayesian network technology, automated causal discovery, and learning probabilities from data and shows how to employ these technologies to develop probabilistic expert systems. Web Resource The book’s website at www.csse.monash.edu.au/bai/book/book.html offers a variety of supplemental materials, including example Bayesian networks and data sets. Instructors can email the authors for sample solutions to many of the problems in the text.

Author: Thomas Dyhre Nielsen,FINN VERNER JENSEN

Publisher: Springer Science & Business Media

ISBN: 9780387682815

Category: Science

Page: 448

View: 7872

This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.

Author: Norman Fenton,Martin Neil

Publisher: CRC Press

ISBN: 1351978969

Category: Mathematics

Page: 704

View: 3634

Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.

*An Integrated Approach, Second Edition*

Author: Helio S. Migon,Dani Gamerman,Francisco Louzada

Publisher: CRC Press

ISBN: 1439878803

Category: Mathematics

Page: 385

View: 9920

A Balanced Treatment of Bayesian and Frequentist Inference Statistical Inference: An Integrated Approach, Second Edition presents an account of the Bayesian and frequentist approaches to statistical inference. Now with an additional author, this second edition places a more balanced emphasis on both perspectives than the first edition. New to the Second Edition New material on empirical Bayes and penalized likelihoods and their impact on regression models Expanded material on hypothesis testing, method of moments, bias correction, and hierarchical models More examples and exercises More comparison between the approaches, including their similarities and differences Designed for advanced undergraduate and graduate courses, the text thoroughly covers statistical inference without delving too deep into technical details. It compares the Bayesian and frequentist schools of thought and explores procedures that lie on the border between the two. Many examples illustrate the methods and models, and exercises are included at the end of each chapter.

Author: Uffe B. Kjærulff,Anders L. Madsen

Publisher: Springer Science & Business Media

ISBN: 1461451043

Category: Computers

Page: 382

View: 3710

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.

Author: Roy Levy,Robert J. Mislevy

Publisher: CRC Press

ISBN: 131535697X

Category: Mathematics

Page: 466

View: 5702

A Single Cohesive Framework of Tools and Procedures for Psychometrics and Assessment Bayesian Psychometric Modeling presents a unified Bayesian approach across traditionally separate families of psychometric models. It shows that Bayesian techniques, as alternatives to conventional approaches, offer distinct and profound advantages in achieving many goals of psychometrics. Adopting a Bayesian approach can aid in unifying seemingly disparate—and sometimes conflicting—ideas and activities in psychometrics. This book explains both how to perform psychometrics using Bayesian methods and why many of the activities in psychometrics align with Bayesian thinking. The first part of the book introduces foundational principles and statistical models, including conceptual issues, normal distribution models, Markov chain Monte Carlo estimation, and regression. Focusing more directly on psychometrics, the second part covers popular psychometric models, including classical test theory, factor analysis, item response theory, latent class analysis, and Bayesian networks. Throughout the book, procedures are illustrated using examples primarily from educational assessments. A supplementary website provides the datasets, WinBUGS code, R code, and Netica files used in the examples.

*An Introduction*

Author: Timo Koski,John Noble

Publisher: John Wiley and Sons

ISBN: 9780470684030

Category: Mathematics

Page: 366

View: 8186

Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include: An introduction to Dirichlet Distribution, Exponential Families and their applications. A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree methods. A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning. All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online. This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology. Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.

Author: Kenneth Baclawski

Publisher: CRC Press

ISBN: 9781420065220

Category: Mathematics

Page: 384

View: 5530

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

Author: Adnan Darwiche

Publisher: Cambridge University Press

ISBN: 0521884381

Category: Computers

Page: 548

View: 2915

This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.

Author: Richard E. Neapolitan

Publisher: Prentice Hall

ISBN: N.A

Category: Computers

Page: 674

View: 4849

For courses in Bayesian Networks or Advanced Networking focusing on Bayesian networks found in departments of Computer Science, Computer Engineering and Electrical Engineering. Also appropriate as a supplementary text in courses on Expert Systems, Machine Learning, and Artificial Intelligence where the topic of Bayesian Networks is covered. This book provides an accessible and unified discussion of Bayesian networks. It includes discussions of topics related to the areas of artificial intelligence, expert systems and decision analysis, the fields in which Bayesian networks are frequently applied. The author discusses both methods for doing inference in Bayesian networks and influence diagrams. The book also covers the Bayesian method for learning the values of discrete and continuous parameters. Both the Bayesian and constraint-based methods for learning structure are discussed in detail.

Author: Rodrigo A. Collazo,Christiane Goergen,Jim Q. Smith

Publisher: CRC Press

ISBN: 1351646834

Category: Business & Economics

Page: 234

View: 4692

?Written by some major contributors to the development of this class of graphical models, Chain Event Graphs introduces a viable and straightforward new tool for statistical inference, model selection and learning techniques. The book extends established technologies used in the study of discrete Bayesian Networks so that they apply in a much more general setting As the first book on Chain Event Graphs, this monograph is expected to become a landmark work on the use of event trees and coloured probability trees in statistics, and to lead to the increased use of such tree models to describe hypotheses about how events might unfold. Features: introduces a new and exciting discrete graphical model based on an event tree focusses on illustrating inferential techniques, making its methodology accessible to a very broad audience and, most importantly, to practitioners illustrated by a wide range of examples, encompassing important present and future applications includes exercises to test comprehension and can easily be used as a course book introduces relevant software packages Rodrigo A. Collazo is a methodological and computational statistician based at the Naval Systems Analysis Centre (CASNAV) in Rio de Janeiro, Brazil. Christiane Görgen is a mathematical statistician at the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany. Jim Q. Smith is a professor of statistics at the University of Warwick, UK. He has published widely in the field of statistics, AI, and decision analysis and has written two other books, most recently Bayesian Decision Analysis: Principles and Practice (Cambridge University Press 2010).

Author: Harry Crane

Publisher: CRC Press

ISBN: 1351807331

Category: Business & Economics

Page: 236

View: 2026

Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE. ? ? ? ? ? ?

Author: Finn V. Jensen

Publisher: Springer

ISBN: 9780387915029

Category: Mathematics

Page: 178

View: 2145

Disk contains: Tool for building Bayesian networks -- Library of examples -- Library of proposed solutions to some exercises.

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 1118448960

Category: Mathematics

Page: 1080

View: 1522

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Author: Pierre Parrend,Paul Bourgine,Pierre Collet

Publisher: Springer

ISBN: 3319459015

Category: Science

Page: 424

View: 1997

This book contains the proceedings as well as invited papers for the first annual conference of the UNESCO Unitwin Complex System Digital Campus (CSDC), which is an international initiative gathering 120 Universities on four continents, and structured in ten E-Departments. First Complex Systems Digital Campus World E-Conference 2015 features chapters from the latest research results on theoretical questions of complex systems and their experimental domains. The content contained bridges the gap between the individual and the collective within complex systems science and new integrative sciences on topics such as: genes to organisms to ecosystems, atoms to materials to products, and digital media to the Internet. The conference breaks new ground through a dedicated video-conferencing system – a concept at the heart of the international UNESCO UniTwin, embracing scientists from low-income and distant countries. This book promotes an integrated system of research, education, and training. It also aims at contributing to global development by taking into account its social, economic, and cultural dimensions. First Complex Systems Digital Campus World E-Conference 2015 will appeal to students and researchers working in the fields of complex systems, statistical physics, computational intelligence, and biological physics.

Author: Andrew Gelman,John B. Carlin,Hal S. Stern,David B. Dunson,Aki Vehtari,Donald B. Rubin

Publisher: CRC Press

ISBN: 1439840954

Category: Mathematics

Page: 675

View: 9234

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.