Basic Algebraic Geometry 1

Varieties in Projective Space

Author: Igor R. Shafarevich

Publisher: Springer Science & Business Media

ISBN: 3642379567

Category: Mathematics

Page: 310

View: 4876

DOWNLOAD NOW »
Shafarevich's Basic Algebraic Geometry has been a classic and universally used introduction to the subject since its first appearance over 40 years ago. As the translator writes in a prefatory note, ``For all [advanced undergraduate and beginning graduate] students, and for the many specialists in other branches of math who need a liberal education in algebraic geometry, Shafarevich’s book is a must.'' The third edition, in addition to some minor corrections, now offers a new treatment of the Riemann--Roch theorem for curves, including a proof from first principles. Shafarevich's book is an attractive and accessible introduction to algebraic geometry, suitable for beginning students and nonspecialists, and the new edition is set to remain a popular introduction to the field.

Basic Algebraic Geometry 2

Schemes and Complex Manifolds

Author: Igor R. Shafarevich

Publisher: Springer Science & Business Media

ISBN: 3642380107

Category: Mathematics

Page: 262

View: 8739

DOWNLOAD NOW »
Shafarevich's Basic Algebraic Geometry has been a classic and universally used introduction to the subject since its first appearance over 40 years ago. As the translator writes in a prefatory note, ``For all [advanced undergraduate and beginning graduate] students, and for the many specialists in other branches of math who need a liberal education in algebraic geometry, Shafarevich’s book is a must.'' The second volume is in two parts: Book II is a gentle cultural introduction to scheme theory, with the first aim of putting abstract algebraic varieties on a firm foundation; a second aim is to introduce Hilbert schemes and moduli spaces, that serve as parameter spaces for other geometric constructions. Book III discusses complex manifolds and their relation with algebraic varieties, Kähler geometry and Hodge theory. The final section raises an important problem in uniformising higher dimensional varieties that has been widely studied as the ``Shafarevich conjecture''. The style of Basic Algebraic Geometry 2 and its minimal prerequisites make it to a large extent independent of Basic Algebraic Geometry 1, and accessible to beginning graduate students in mathematics and in theoretical physics.

Algebraic Geometry I

Algebraic Curves, Algebraic Manifolds and Schemes

Author: V.I. Danilov,V.V. Shokurov

Publisher: Springer Science & Business Media

ISBN: 9783540637059

Category: Mathematics

Page: 310

View: 2066

DOWNLOAD NOW »
"... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics." --Acta Scientiarum Mathematicarum

A Royal Road to Algebraic Geometry

Author: Audun Holme

Publisher: Springer Science & Business Media

ISBN: 9783642192258

Category: Mathematics

Page: 366

View: 8824

DOWNLOAD NOW »
This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 6174

DOWNLOAD NOW »
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

The Geometry of Schemes

Author: David Eisenbud,Joe Harris

Publisher: Springer Science & Business Media

ISBN: 0387226397

Category: Mathematics

Page: 300

View: 3629

DOWNLOAD NOW »
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

Algebraic Geometry: Sheaves and cohomology

Author: 健爾·上野

Publisher: American Mathematical Soc.

ISBN: 9780821813577

Category: Mathematics

Page: 184

View: 3275

DOWNLOAD NOW »
Modern algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes is presented in the first part of this book (Algebraic Geometry 1: From Algebraic Varieties to Schemes, AMS, 1999, Translations of Mathematical Monographs, Volume 185). In the present book, the author turns to the theory of sheaves and their cohomology. Loosely speaking, a sheaf is a way of keeping track of local information defined on a topological space, such as the local algebraic functions on an algebraic manifold or the local sections of a vector bundle. Sheaf cohomology is a primary tool in understanding sheaves and using them to study properties of the corresponding manifolds. The text covers the important topics of the theory of sheaves on algebraic varieties, including types of sheaves and the fundamental operations on them, such as coherent and quasicoherent sheaves, direct and inverse images, behavior of sheaves under proper and projective morphisms, and Cech cohomology. The book contains numerous problems and exercises with solutions. It would be an excellent text for the second part of a course in algebraic geometry.

Algebraic Geometry

A Problem Solving Approach

Author: Thomas A. Garrity

Publisher: American Mathematical Soc.

ISBN: 0821893963

Category: Mathematics

Page: 335

View: 4687

DOWNLOAD NOW »
Algebraic Geometry has been at the center of much of mathematics for hundreds of years. It is not an easy field to break into, despite its humble beginnings in the study of circles, ellipses, hyperbolas, and parabolas. This text consists of a series of ex

Introduction to the Theory of Schemes

Author: Yuri I. Manin

Publisher: Springer

ISBN: 3319743163

Category: Mathematics

Page: 205

View: 4475

DOWNLOAD NOW »
This English edition of Yuri I. Manin's well-received lecture notes provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians. This book will be of interest to students majoring in algebraic geometry and theoretical physics (high energy physics, solid body, astrophysics) as well as to researchers and scholars in these areas. "This is an excellent introduction to the basics of Grothendieck's theory of schemes; the very best first reading about the subject that I am aware of. I would heartily recommend every grad student who wants to study algebraic geometry to read it prior to reading more advanced textbooks."- Alexander Beilinson

A Scrapbook of Complex Curve Theory

Author: Charles Herbert Clemens

Publisher: American Mathematical Soc.

ISBN: 0821833073

Category: Mathematics

Page: 188

View: 8218

DOWNLOAD NOW »
This fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of ``impressions'' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.

Complex Ball Quotients and Line Arrangements in the Projective Plane (MN-51)

Author: Paula Tretkoff

Publisher: Princeton University Press

ISBN: 1400881250

Category: Mathematics

Page: 232

View: 3021

DOWNLOAD NOW »
This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. Paula Tretkoff emphasizes those finite covers that are free quotients of the complex two-dimensional ball. Tretkoff also includes background on the classical Gauss hypergeometric function of one variable, and a chapter on the Appell two-variable F1 hypergeometric function. The material in this book began as a set of lecture notes, taken by Tretkoff, of a course given by Friedrich Hirzebruch at ETH Zürich in 1996. The lecture notes were then considerably expanded by Hirzebruch and Tretkoff over a number of years. In this book, Tretkoff has expanded those notes even further, still stressing examples offered by finite covers of line arrangements. The book is largely self-contained and foundational material is introduced and explained as needed, but not treated in full detail. References to omitted material are provided for interested readers. Aimed at graduate students and researchers, this is an accessible account of a highly informative area of complex geometry.

Using Algebraic Geometry

Author: David A Cox,John Little,Donal O'Shea

Publisher: Springer Science & Business Media

ISBN: 9780387207339

Category: Mathematics

Page: 12

View: 6702

DOWNLOAD NOW »
The discovery of new algorithms for dealing with polynomial equations, and their implementation on fast, inexpensive computers, has revolutionized algebraic geometry and led to exciting new applications in the field. This book details many uses of algebraic geometry and highlights recent applications of Grobner bases and resultants. This edition contains two new sections, a new chapter, updated references and many minor improvements throughout.

Hodge Theory and Complex Algebraic Geometry I:

Author: Claire Voisin

Publisher: Cambridge University Press

ISBN: 9781139437691

Category: Mathematics

Page: N.A

View: 1992

DOWNLOAD NOW »
The first of two volumes offering a modern introduction to Kaehlerian geometry and Hodge structure. The book starts with basic material on complex variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory, the latter being treated in a more theoretical way than is usual in geometry. The author then proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The book culminates with the Hodge decomposition theorem. The meanings of these results are investigated in several directions. Completely self-contained, the book is ideal for students, while its content gives an account of Hodge theory and complex algebraic geometry as has been developed by P. Griffiths and his school, by P. Deligne, and by S. Bloch. The text is complemented by exercises which provide useful results in complex algebraic geometry.

Principles of Algebraic Geometry

Author: Phillip Griffiths,Joseph Harris

Publisher: John Wiley & Sons

ISBN: 111862632X

Category: Mathematics

Page: 832

View: 8443

DOWNLOAD NOW »
A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

ISBN: 1461418097

Category: Mathematics

Page: 329

View: 3351

DOWNLOAD NOW »
This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.

Algebraic Curves and Riemann Surfaces

Author: Rick Miranda

Publisher: American Mathematical Soc.

ISBN: 0821802682

Category: Mathematics

Page: 390

View: 4322

DOWNLOAD NOW »
The book was easy to understand, with many examples. The exercises were well chosen, and served to give further examples and developments of the theory. --William Goldman, University of Maryland In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking center stage. But the main examples come from projective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Duality Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves and cohomology are introduced as a unifying device in the latter chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one semester of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-semester course in complex variables or a year-long course in algebraic geometry.

ALgebraic Geometry

Complex projective varieties. vol. 1

Author: David Mumford

Publisher: Springer Science & Business Media

ISBN: 9783540586579

Category: Mathematics

Page: 186

View: 9772

DOWNLOAD NOW »
Let me begin with a little history. In the 20th century, algebraic geometry has gone through at least 3 distinct phases. In the period 1900-1930, largely under the leadership of the 3 Italians, Castelnuovo, Enriques and Severi, the subject grew immensely. In particular, what the late 19th century had done for curves, this period did for surfaces: a deep and systematic theory of surfaces was created. Moreover, the links between the "synthetic" or purely "algebro-geometric" techniques for studying surfaces, and the topological and analytic techniques were thoroughly explored. However the very diversity of tools available and the richness of the intuitively appealing geometric picture that was built up, led this school into short-cutting the fine details of all proofs and ignoring at times the time consuming analysis of special cases (e. g. , possibly degenerate configurations in a construction). This is the traditional difficulty of geometry, from High School Euclidean geometry on up. In the period 1930-1960, under the leadership of Zariski, Weil, and (towards the end) Grothendieck, an immense program was launched to introduce systematically the tools of commutative algebra into algebraic geometry and to find a common language in which to talk, for instance, of projective varieties over characteristic p fields as well as over the complex numbers. In fact, the goal, which really goes back to Kronecker, was to create a "geometry" incorporating at least formally arithmetic as well as projective geo metry.