A First Course in Systems Biology

Author: Eberhard Voit

Publisher: Garland Science

ISBN: 1351332945

Category: Computers

Page: 480

View: 2307

DOWNLOAD NOW »
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.

A First Course in Systems Biology

Author: Eberhard Voit

Publisher: Garland Science

ISBN: 1351332937

Category: Computers

Page: 480

View: 5217

DOWNLOAD NOW »
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.

A First Course in Systems Biology

Author: Eberhard O. Voit

Publisher: Garland Science

ISBN: 1136215107

Category: Computers

Page: 496

View: 7546

DOWNLOAD NOW »
A First Course in Systems Biology is a textbook designed for advanced undergraduate and graduate students. Its main focus is the development of computational models and their applications to diverse biological systems. Because the biological sciences have become so complex that no individual can acquire complete knowledge in any given area of specialization, the education of future systems biologists must instead develop a student's ability to retrieve, reformat, merge, and interpret complex biological information. This book provides the reader with the background and mastery of methods to execute standard systems biology tasks, understand the modern literature, and launch into specialized courses or projects that address biological questions using theoretical and computational means. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and larger-scale, often open-ended questions for further reflection.

Mathematical Modeling in Systems Biology

An Introduction

Author: Brian P. Ingalls

Publisher: MIT Press

ISBN: 0262315645

Category: Science

Page: 424

View: 1256

DOWNLOAD NOW »
Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels.The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3--8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

An Introduction to Systems Biology

Design Principles of Biological Circuits

Author: Uri Alon

Publisher: CRC Press

ISBN: 1584886420

Category: Mathematics

Page: 320

View: 7295

DOWNLOAD NOW »
Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.

Systems Biology

Author: Edda Klipp,Wolfram Liebermeister,Christoph Wierling,Axel Kowald,Hans Lehrach,Ralf Herwig

Publisher: John Wiley & Sons

ISBN: 3527644970

Category: Medical

Page: 592

View: 9381

DOWNLOAD NOW »
This advanced textbook is tailored to the needs of introductory course in Systems Biology. It has a compagnion website (WWW.WILEY-VCH.DE/HOME/SYSTEMSBIOLOGY) with solutions to questions in the book and several additional extensive working models. The book is related to the very successful previous title 'Systems Biology in Practice' and has incorporated the feedback and suggestions from many lecturers worldwide. The book addresses biologists as well as engineers and computer scientists. The interdisciplinary team of acclaimed authors worked closely together to ensure a comprehensive coverage with no overlaps in a homogenous and compelling style.

Stochastic Modelling for Systems Biology, Second Edition

Author: Darren J. Wilkinson

Publisher: CRC Press

ISBN: 1439837724

Category: Mathematics

Page: 363

View: 7404

DOWNLOAD NOW »
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

The Inner Workings of Life

Vignettes in Systems Biology

Author: Eberhard O. Voit

Publisher: Cambridge University Press

ISBN: 1107149959

Category: Science

Page: 208

View: 5012

DOWNLOAD NOW »
Living systems are dynamic and extremely complex and their behaviour is often hard to predict by studying their individual parts. Systems biology promises to reveal and analyse these highly connected, regulated and adaptable systems, using mathematical modelling and computational analysis. This new systems approach is already having a broad impact on biological research and has potentially far-reaching implications for our understanding of life. Written in an informal and non-technical style, this book provides an accessible introduction to systems biology. Self-contained vignettes each convey a key theme and are intended to enlighten, provoke and interest readers of different academic disciplines, but also to offer new insight to those working in the field. Using a minimum amount of jargon and no mathematics, Voit manages to convey complex ideas and give the reader a genuine sense of the excitement that systems biology brings with it, as well as the current challenges and opportunities.

Computational Systems Biology of Cancer

Author: Emmanuel Barillot,Laurence Calzone,Philippe Hupe,Jean-Philippe Vert,Andrei Zinovyev

Publisher: CRC Press

ISBN: 1439831440

Category: Science

Page: 461

View: 527

DOWNLOAD NOW »
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.

A First Course in Machine Learning

Author: Simon Rogers,Mark Girolami

Publisher: CRC Press

ISBN: 1498759602

Category: Business & Economics

Page: 305

View: 9435

DOWNLOAD NOW »
A First Course in Machine Learning covers the core mathematical and statistical techniques needed to understand some of the most popular machine learning algorithms. The algorithms presented span the main problem areas within machine learning: classification, clustering and projection. The text gives detailed descriptions and derivations for a small number of algorithms rather than cover many algorithms in less detail. Referenced throughout the text and available on a supporting website (http://bit.ly/firstcourseml), an extensive collection of MATLAB®/Octave scripts enables students to recreate plots that appear in the book and investigate changing model specifications and parameter values. By experimenting with the various algorithms and concepts, students see how an abstract set of equations can be used to solve real problems. Requiring minimal mathematical prerequisites, the classroom-tested material in this text offers a concise, accessible introduction to machine learning. It provides students with the knowledge and confidence to explore the machine learning literature and research specific methods in more detail.

Computational Systems Biology

From Molecular Mechanisms to Disease

Author: Andres Kriete,Roland Eils

Publisher: Academic Press

ISBN: 0124059384

Category: Computers

Page: 548

View: 2692

DOWNLOAD NOW »
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. Logical information flow aids understanding of basic building blocks of life through disease phenotypes Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.

A Practical Guide To Cancer Systems Biology

Author: Juan Hsueh-fen,Huang Hsuan-cheng

Publisher: World Scientific

ISBN: 9813229160

Category: Medical

Page: 152

View: 7361

DOWNLOAD NOW »
Systems biology combines computational and experimental approaches to analyze complex biological systems and focuses on understanding functional activities from a systems-wide perspective. It provides an iterative process of experimental measurements, data analysis, and computational simulation to model biological behavior. This book provides explained protocols for high-throughput experiments and computational analysis procedures central to cancer systems biology research and education. Readers will learn how to generate and analyze high-throughput data, therapeutic target protein structure modeling and docking simulation for drug discovery. This is the first practical guide for students and scientists who wish to become systems biologists or utilize the approach for cancer research. Contents: Introduction to Cancer Systems Biology (Hsueh-Fen Juan and Hsuan-Cheng Huang)Transcriptome Analysis: Library Construction (Hsin-Yi Chang and Hsueh-Fen Juan)Quantitative Proteome: The Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) (Yi-Hsuan Wu and Hsueh-Fen Juan)Phosphoproteome: Sample Preparation (Chia-Wei Hu and Hsueh-Fen Juan)Transcriptomic Data Analysis: RNA-Seq Analysis Using Galaxy (Chia-Lang Hsu and Chantal Hoi Yin Cheung)Proteomic Data Analysis: Functional Enrichment (Hsin-Yi Chang and Hsueh-Fen Juan)Phosphorylation Data Analysis (Chia-Lang Hsu and Wei-Hsuan Wang)Pathway and Network Analysis (Chen-Tsung Huang and Hsueh-Fen Juan)Dynamic Modeling (Yu-Chao Wang)Protein Structure Modeling (Chia-Hsien Lee and Hsueh-Fen Juan)Docking Simulation (Chia-Hsien Lee and Hsueh-Fen Juan) Readership: Graduate students and researchers entering the cancer systems biology field. Keywords: Systems Biology;Transcriptomics;Proteomics;Network Biology;Dynamic Modeling;Protein Structure Modeling;Docking Simulation;BioinformaticsReview: Key Features: Written by two active researchers in the fieldCovers both experimental and computational areas in cancer systems biologyStep-by-step instructions help beginners who are interested in creating biological data and analyzing the data by themselvesReaders will gain the skills to generate and analyze omics data and discover potential therapeutic targets and drug candidates

Systems Biology

Mathematical Modeling and Model Analysis

Author: Andreas Kremling

Publisher: CRC Press

ISBN: 1466567899

Category: Mathematics

Page: 379

View: 7019

DOWNLOAD NOW »
Drawing on the latest research in the field, Systems Biology: Mathematical Modeling and Model Analysis presents many methods for modeling and analyzing biological systems, in particular cellular systems. It shows how to use predictive mathematical models to acquire and analyze knowledge about cellular systems. It also explores how the models are systematically applied in biotechnology. The first part of the book introduces biological basics, such as metabolism, signaling, gene expression, and control as well as mathematical modeling fundamentals, including deterministic models and thermodynamics. The text also discusses linear regression methods, explains the differences between linear and nonlinear regression, and illustrates how to determine input variables to improve estimation accuracy during experimental design. The second part covers intracellular processes, including enzymatic reactions, polymerization processes, and signal transduction. The author highlights the process–function–behavior sequence in cells and shows how modeling and analysis of signal transduction units play a mediating role between process and function. The third part presents theoretical methods that address the dynamics of subsystems and the behavior near a steady state. It covers techniques for determining different time scales, sensitivity analysis, structural kinetic modeling, and theoretical control engineering aspects, including a method for robust control. It also explores frequent patterns (motifs) in biochemical networks, such as the feed-forward loop in the transcriptional network of E. coli. Moving on to models that describe a large number of individual reactions, the last part looks at how these cellular models are used in biotechnology. The book also explains how graphs can illustrate the link between two components in large networks with several interactions.

Feedback Control in Systems Biology

Author: Carlo Cosentino,Declan Bates

Publisher: CRC Press

ISBN: 1439816905

Category: Mathematics

Page: 296

View: 388

DOWNLOAD NOW »
Like engineering systems, biological systems must also operate effectively in the presence of internal and external uncertainty—such as genetic mutations or temperature changes, for example. It is not surprising, then, that evolution has resulted in the widespread use of feedback, and research in systems biology over the past decade has shown that feedback control systems are widely found in biology. As an increasing number of researchers in the life sciences become interested in control-theoretic ideas such as feedback, stability, noise and disturbance attenuation, and robustness, there is a need for a text that explains feedback control as it applies to biological systems. Written by established researchers in both control engineering and systems biology, Feedback Control in Systems Biology explains how feedback control concepts can be applied to systems biology. Filling the need for a text on control theory for systems biologists, it provides an overview of relevant ideas and methods from control engineering and illustrates their application to the analysis of biological systems with case studies in cellular and molecular biology. Control Theory for Systems Biologists The book focuses on the fundamental concepts used to analyze the effects of feedback in biological control systems, rather than the control system design methods that form the core of most control textbooks. In addition, the authors do not assume that readers are familiar with control theory. They focus on "control applications" such as metabolic and gene-regulatory networks rather than aircraft, robots, or engines, and on mathematical models derived from classical reaction kinetics rather than classical mechanics. Another significant feature of the book is that it discusses nonlinear systems, an understanding of which is crucial for systems biologists because of the highly nonlinear nature of biological systems. The authors cover tools and techniques for the analysis of linear and nonlinear systems; negative and positive feedback; robustness analysis methods; techniques for the reverse-engineering of biological interaction networks; and the analysis of stochastic biological control systems. They also identify new research directions for control theory inspired by the dynamic characteristics of biological systems. A valuable reference for researchers, this text offers a sound starting point for scientists entering this fascinating and rapidly developing field.

Systems Biology: Simulation of Dynamic Network States

Author: Bernhard Ø. Palsson

Publisher: Cambridge University Press

ISBN: 1139495429

Category: Science

Page: N.A

View: 1729

DOWNLOAD NOW »
Biophysical models have been used in biology for decades, but they have been limited in scope and size. In this book, Bernhard Ø. Palsson shows how network reconstructions that are based on genomic and bibliomic data, and take the form of established stoichiometric matrices, can be converted into dynamic models using metabolomic and fluxomic data. The Mass Action Stoichiometric Simulation (MASS) procedure can be used for any cellular process for which data is available and allows a scalable step-by-step approach to the practical construction of network models. Specifically, it can treat integrated processes that need explicit accounting of small molecules and protein, which allows simulation at the molecular level. The material has been class-tested by the author at both the undergraduate and graduate level. All computations in the text are available online in MATLAB and MATHEMATICA® workbooks, allowing hands-on practice with the material.

Fundamentals of Systems Biology

From Synthetic Circuits to Whole-cell Models

Author: Markus W. Covert

Publisher: CRC Press

ISBN: 1498728472

Category: Technology & Engineering

Page: 367

View: 2579

DOWNLOAD NOW »
For decades biology has focused on decoding cellular processes one gene at a time, but many of the most pressing biological questions, as well as diseases such as cancer and heart disease, are related to complex systems involving the interaction of hundreds, or even thousands, of gene products and other factors. How do we begin to understand this complexity? Fundamentals of Systems Biology: From Synthetic Circuits to Whole-cell Models introduces students to methods they can use to tackle complex systems head-on, carefully walking them through studies that comprise the foundation and frontier of systems biology. The first section of the book focuses on bringing students quickly up to speed with a variety of modeling methods in the context of a synthetic biological circuit. This innovative approach builds intuition about the strengths and weaknesses of each method and becomes critical in the book’s second half, where much more complicated network models are addressed—including transcriptional, signaling, metabolic, and even integrated multi-network models. The approach makes the work much more accessible to novices (undergraduates, medical students, and biologists new to mathematical modeling) while still having much to offer experienced modelers--whether their interests are microbes, organs, whole organisms, diseases, synthetic biology, or just about any field that investigates living systems.

Dynamic Systems Biology Modeling and Simulation

Author: Joseph DiStefano III

Publisher: Academic Press

ISBN: 0124104932

Category: Science

Page: 884

View: 1475

DOWNLOAD NOW »
Dynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author’s own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics; PLUS ....... The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of “math modeling” with life sciences. Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization. Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models. A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course. Importantly, the slides are editable, so they can be readily adapted to a lecturer’s personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content. The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]

Stochastic Dynamics for Systems Biology

Author: Christian Mazza,Michel Benaim

Publisher: CRC Press

ISBN: 1466514949

Category: Mathematics

Page: 274

View: 4783

DOWNLOAD NOW »
Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing system. Most of the text should be accessible to scientists with basic knowledge in calculus and probability theory. The authors illustrate the relevant Markov chain theory using realistic models from systems biology, including signaling and metabolic pathways, phosphorylation processes, genetic switches, and transcription. A central part of the book presents an original and up-to-date treatment of cooperativity. The book defines classical indexes, such as the Hill coefficient, using notions from statistical mechanics. It explains why binding curves often have S-shapes and why cooperative behaviors can lead to ultrasensitive genetic switches. These notions are then used to model transcription rates. Examples cover the phage lambda genetic switch and eukaryotic gene expression. The book then presents a short course on dynamical systems and describes stochastic aspects of linear noise approximation. This mathematical framework enables the simplification of complex stochastic dynamics using Gaussian processes and nonlinear ODEs. Simple examples illustrate the technique in noise propagation in gene networks and the effects of network structures on multistability and gene expression noise levels. The last chapter provides up-to-date results on stochastic and deterministic mass action kinetics with applications to enzymatic biochemical reactions and metabolic pathways.

DNA Science

A First Course

Author: David A. Micklos,Greg A. Freyer,David A. Crotty

Publisher: CSHL Press

ISBN: 9780879696368

Category: Science

Page: 575

View: 2579

DOWNLOAD NOW »
. . .[A]n excellent molecular biology guide and lab manual for beginners. It is concocted uniquely as one part text that introduces the reader to the scientific concepts and one part well designed and tested laboratories in a friendly format.--"Science Books & Films."

Systematic

How Systems Biology Is Transforming Modern Medicine

Author: James R. Valcourt

Publisher: Bloomsbury Publishing USA

ISBN: 1632860317

Category: Science

Page: 288

View: 9362

DOWNLOAD NOW »
A brilliant young scientist introduces us to the fascinating field that is changing our understanding of how the body works and the way we can approach healing. SYSTEMATIC is the first book to introduce general readers to systems biology, which is improving medical treatments and our understanding of living things. In traditional bottom-up biology, a biologist might spend years studying how a single protein works, but systems biology studies how networks of those proteins work together--how they promote health and how to remedy the situation when the system isn't functioning properly. Breakthroughs in systems biology became possible only when powerful computer technology enabled researchers to process massive amounts of data to study complete systems, and has led to progress in the study of gene regulation and inheritance, cancer drugs personalized to an individual's genetically unique tumor, insights into how the brain works, and the discovery that the bacteria and other microbes that live in the gut may drive malnutrition and obesity. Systems biology is allowing us to understand more complex phenomena than ever before. In accessible prose, SYSTEMATIC sheds light not only on how systems within the body work, but also on how research is yielding new kinds of remedies that enhance and harness the body's own defenses.